

 HORIZON 2020

D4.1 Data representation model V1

Augmented Reality Enriched Situation awareness for Border
security

ARESIBO – GA 833805

Deliverable Information

Deliverable Number: D4.1 Work Package: #4
Date of Issue: 29/02/2029
Document Reference: N/A
Version Number: 1.0

Nature of Deliverable:
Report

Dissemination Level of Deliverable:
Public

Author(s): CERTH (Responsible)
Keywords: data model, interoperability, ontology, structured knowledge, heterogeneous
data, incident and event description, contextual information, alerts, situational awareness
Abstract: This document summarises the performed investigation of the ARESIBO system
specifications in order to describe the detailed functionality and information exchange
between the ARESIBO components. On the basis of the aforementioned, an interoperable
Data Model is defined, for structuring the exchanged content and more specifically for
describing incidents, resources and tasks. The deliverable also presents the first iteration of
the ARESIBO knowledge base, which is a knowledge representation model for semantically
representing notions pertinent to the project.

Ref. Ares(2020)1281719 - 01/03/2020

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 2 of 73

Document History

Date Version Remarks

25.11.2019 0.1 Deliverable outline (CERTH)

02.12.2019 0.2 Contribution in Chapter 3 (CERTH, all)

10.12.2019 0.3 Contribution in Chapter 4 (CERTH)

14.02.2020 0.4 Conclude introductory parts (CERTH)

16.02.2020 0.9 Major refinements (CERTH)

29.02.202 0.91 Internal Review (Airbus)

29.02.2020 1.0 Final version for submission (CERTH)

Document Authors

Entity Contributors

CERTH Marina, Riga (mriga@iti.gr)
Ilias, Koulalis (iliask@iti.gr)
George, Prountzos gprountzos@iti.gr)
Kostas, Ioannidis (kioannid@iti.gr)

UoA Vassilis, Papataxiarhis (vpap@di.uoa.gr)
Michael, Loukeris (michael.loukeris@icloud.com)
Kostas, Kyriakos (kostaskyriakos97@outlook.com)

ConvCao Savvas, Apostolidis (sapostol@iti.gr)
Thanasis, Kapoutsis (athakapo@iti.gr)

TEKEVER Luis, Sousa (luis.sousa@tekever.com)
Tiago, Marques (tiago.marques@tekever.com)

ROBOTNIK Marc, Bosch (mbosch@robotnik.es)

CMRE Luca, Berretta (Luca.Berretta@cmre.nato.int)

OCEANSCAN Fernando, Bittencourt (fbittencourt@oceanscan-mst.com)

IES Massimo, Cristaldi (m.cristaldi@i4es.it)
Giovanni, Tusa (g.tusa@iessolutions.eu)

Disclosure Statement:

The information contained in this document is the property of ARESIBO Consortium and it
shall not be reproduced, disclosed, modified or communicated to any third parties without the
prior written consent of the abovementioned entities.

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 3 of 73

Table of Contents

Document History .. 2
Document Authors ... 2
Table of Contents .. 3
List of Tables ... 5
List of Figures .. 7
List of Acronyms .. 8
1 Executive summary .. 9
2 Introduction ...10
3 Definition of the ARESIBO Data Model ..12

3.1 Technical requirements defined per component ...12

3.1.1 UAV and sensors (T3.2) ..12

3.1.2 Swarming robots and human-robot collaboration (T3.3)13

3.1.3 Assets’ communication (T3.4) ...14

3.1.4 Voice and Video (T3.5) ..14

3.1.5 Visual Object Detection (T3.6) ...15

3.1.6 Semantic Representation and Reasoning (T4.1) ...16

3.1.7 Mission Editor (T4.2) ...16

3.1.8 Simulation Engine (T4.3) ...17

3.1.9 Decision support functionalities (T4.4) ...17

3.1.10 Sensor Fusion Engine (T4.5) ...18

3.1.11 Risk Models (T4.6) ..18

3.1.12 XR visualisation (T5.1-4) ...19

3.1.13 Mission status (T6.2) ...19

3.2 End-user requirements ...20

3.3 Existing Standards and Protocol adaptors ..20

3.3.1 STANAG 4586 ..20

3.3.2 STANAG 4609 ..22

3.3.3 JAUS/JANUS ..22

3.3.4 UCS and UCS 3.4 ...24

3.4 ARESIBO Data Model ..25

3.4.1 Plan ...26

3.4.2 Waypoint ...26

3.4.3 Command/Action ...27

3.4.4 Payload ...27

3.4.5 Mission ..31

3.4.6 MissionStatus/MissionChange ..33

3.4.7 TelemetryData...33

3.4.8 AreaOfInterest ...35

3.4.9 AerialVehicleType ...36

3.4.10 UnderwaterVehicleType ..40

3.4.11 GroundVehicleType ..41

3.4.12 WeatherData/EnvironmentalConditions ...42

3.4.13 Sensor ..45

3.4.14 XR (AR/MR/VR) device ...46

3.4.15 VideoDetection ..47

3.4.16 AlertType ...48

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 4 of 73

3.4.17 Position/Geospatial data ...50

3.4.18 Decision Support/Action ..50

3.4.19 VoiceStream ...52

3.4.20 VideoStream ...53

4 Definition of the ARESIBO Knowledge Base (KB) ...53
4.1 Ontologies and Semantic Web ...54

4.2 Ontology Engineering Process ...54

4.3 The ARESIBO Ontology ...55

4.3.1 Specification of Ontology Requirements ..55

4.3.2 Reuse of Existing Resources ..57

4.3.3 Ontology formalisation and implementation ...60

4.3.4 Ontology conceptualisation and mapping ..61

4.3.5 Ontology Evaluation ..67

4.4 Semantic Reasoning ..68

5 Conclusions and future work ...70
References ...71

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 5 of 73

List of Tables

Table 1 – T3.2 component details ..12
Table 2 – T3.3 component details ..13
Table 3 – T3.4 component details ..14
Table 4 – T3.5 component details ..15
Table 5 – T3.6 component details ..15
Table 6 – T4.1 component details ..16
Table 7 – T4.2 component details ..16
Table 8 – T4.3 component details ..17
Table 9 – T4.4 component details ..17
Table 10 – T4.5 component details ..18
Table 11 – T4.6 component details ..18
Table 12 – T5.1-4 component details ...19
Table 13 – T6.2 component details ..19
Table 14 – Mission Command and Status Messages ...21
Table 15 – Plan structure ...26
Table 16 – route_path_segment structure ..26
Table 17 – WaypointType structure ..26
Table 18 – VehicleSteeringCommand structure ...27
Table 19 – PayloadType structure ..27
Table 20 – PayloadDataRecorderType structure ..28
Table 21 – SubsystemReportType structure ...29
Table 22 – PedestalType structure ...29
Table 23 – CommsRateMegabitsPerSecondCapabilityType structure30
Table 24 – Orientation3DType structure ...30
Table 25 – OrientationVelocityType structure ...30
Table 26 – Position3dPlatformXYZType structure ..30
Table 27 – Mission structure...31
Table 28 – RoutePathType structure ..31
Table 29 – SegmentType structure...32
Table 30 – MissionStatus structure...33
Table 31 – TelemetryData structure ...34
Table 32 – Position3DCovarianceType structure ..34
Table 33 – InertialType structure ..34
Table 34 – OrientationType structure ...35
Table 35 – AreaOfInterest structure..35
Table 36 – AerialVehicleType structure ..36
Table 37 – AccelerationType structure ...38
Table 38 – AttitudeType structure ...38
Table 39 – VelocityType structure ..39
Table 40 – EnduranceType structure ..39
Table 41 – EnduranceFootprintType structure ..39
Table 42 – EnduranceFootprintBoundaryType structure ...39
Table 43 – PositionedEllipseType structure ..39
Table 44 – BatteryType structure ...40
Table 45 – PowerBusType structure ...40
Table 46 – DataLinkConnectionType structure ...40
Table 47 – UnderwaterVehicleType structure ...41
Table 48 – GroundVehicleType structure ...41
Table 49 – VS_Environment structure ..42
Table 50 – AirColumn structure ..42
Table 51 – Bathymetry structure ...43

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 6 of 73

Table 52 – Land structure ...43
Table 53 – WaterColumn structure ...43
Table 54 – SeaBed structure ..44
Table 55 – WeatherStateType structure ...44
Table 56 – WeatherType structure ...44
Table 57 – EOIRStatusRptType structure...45
Table 58 – PayloadSteeringReportType structure ..46
Table 59 – ContentPlaceHolder structure ...46
Table 60 – UserProfile structure ...47
Table 61 – DeviceProfile structure ..47
Table 62 – VideoDetection structure ...47
Table 63 – AlertType structure ...48
Table 64 – Position2DType structure ..50
Table 65 – Position3DType structure ..50
Table 66 – BasicEventAlertInformation structure ..52
Table 67 – ReportResourceDeployStatus structure ..52
Table 68 – IPPacketVoice structure..53
Table 69 – IPPacketVideo structure ...53
Table 70 – Comparison of Ontology Engineering Methods ...54
Table 71 – Potential semantic reasoning scenarios based on the project’s PUCs.56
Table 72 – A list of utilised prefixes and their relevant ontologies ...61
Table 73 – Mapping the core ARESIBO ontology concepts with third-party ones64
Table 74 – SPARQL query functions adopted from GeoSPARQL ..65
Table 75 – Ontology metrics of the implemented ARESIBO ontology (v1), as generated by
OntoMetrics tool ...67

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 7 of 73

List of Figures

Figure 1: A general diagram of data flows within the ARESIBO System10
Figure 2: Data flows, within the context of the ARESIBO System, from a technical
perspective. ..11
Figure 3: Logical diagram of the Interoperability layer. ...12
Figure 4: Communication within a JAUS System ..23
Figure 5: Block diagram of the JANUS Baseline Packet encoding process24
Figure 6: UCS Model Driven Architecture Process ...25
Figure 7. CAP message structure ...51
Figure 8: EDXL-RM messaging reference model. ...51
Figure 9: Interaction of KB, KBS and the different ARESIBO component and sensors54
Figure 10: Structuring the process of adopting domain ontologies (blue ellipse) and upper
level ontologies (grey ellipse) within the context of the ARESIBO ontology57
Figure 11: The MMF Ontology. ...58
Figure 12: Core event model ..58
Figure 13: Core classes and main interrelationships of the EUCISE-OWL ontology.59
Figure 14: The SEMA4A architecture. ..60
Figure 15: The hierarchy of the core classes of the ARESIBO ontology (v1)62
Figure 16: High-level overview of the core classes of the ARESIBO ontology v1..................63
Figure 17: Representation of the analysed data in the ARESIBO ontology64
Figure 18: Representation of the spatial relations between spatial entities in the ARESIBO
ontology ...65
Figure 19: Representation of a detected person close to a restricted location, on the basis of
the ARESIBO ontology. ..66
Figure 20: The role of the ARESIBO KB, on the basis of PUCs ..69

file:///C:/Users/ILIASK/Documents/EU%20Projects/ARESIBO/D4.1/D4.1_Data_representation_model_V1_2020-02-29_v1.0.docx%23_Toc33899976
file:///C:/Users/ILIASK/Documents/EU%20Projects/ARESIBO/D4.1/D4.1_Data_representation_model_V1_2020-02-29_v1.0.docx%23_Toc33899984

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 8 of 73

List of Acronyms

Acronym Meaning

CAP Common Alerting Protocol

CCI Command and Control Interface

CISE Common Interface Sharing Environment

CQs Competency Questions

CUSC Core UCS

DM Data Model

DS Decision Support

EDXL-RM Emergency Data Exchange Language-Resource Messaging

fps Frames Per Second

GA Grand Agreement

GCS Ground Control Station

GGCS Generic Ground Control Station

IR Infrared (camera)

JAUS Joint Architecture for Unmanned Systems

KB Knowledge Base

KBS Knowledge Base Service

OOPS OntOlogy Pitfall Scanner

ORSD Ontology Requirements Specification Document

OWL Web Ontology Language

POI Point of Interest

RDF Resource Description Framework

RGB Red-Green-Blue (camera)

ROI Region of Interest

RTMP Real-Time Messaging Protocol

RTSP Real-Time Streaming Protocol

TBD To Be Determined

UAS Unmanned Aerial System

UAV Unmanned Aerial Vehicle

UCS UAV Control System

UGV Unmanned Ground Vehicle

URI Uniform Resource Identifier

USV Unmanned Surface Vehicle

UUV Unmanned Underwater Vehicle

VSO Vehicle Sales Ontology

W3C WWW Consortium

WWW World Wide Web

XML Extensible Markup Language

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 9 of 73

1 Executive summary

ARESIBO comprises a highly interconnected system of various and independent modules
that feed each other with the acquired information/data concerning surveillance and
monitoring tasks in border territories. The proposed solution involves three main pillars of
processing: (i) a complete configuration at tactical and execution level to optimise the
synergies between humans and sensors, (ii) multiple modules for enhancing the
understanding of the acquired data and (iii) C2 level capabilities for enhanced event
reporting. To complete these objectives, ARESIBO integrates data from multiple sources
including various UxVs and sensors such as UAVs and thermal cameras respectively. In
addition, the system has to generate additional information on top of the acquired data for
augmented situation awareness. The purpose of a common data model for the entire system
is to assure and support interoperability and interconnectivity among different modules and to
design a European-wide solution. On top of the infrastructure that implements the data
model, the system enables multiple end-to-end interactions, leveraging data exchange,
access, acquisition, processing and efficient reporting.
Towards these objectives, this document constitutes deliverable D4.1 “Data representation
model V1” and focuses on presenting the first iteration of the ARESIBO Data Model and the
ARESIBO Ontology. Regarding the ARESIBO Data Model, the main objective is to provide
the system a proper interoperability framework so that several different UxVs will be fully
functional under one common interface, the Generic Ground Control Station (GGCS). The
rationale and the adopted solution rely on an extended version of the UCS 3.4 data model
according to the main ARESIBO requirements and technologies. In addition, for the
ARESIBO Ontology, also referred to as the ARESIBO Knowledge Base (KB) the framework
will be developed to represent and enrich the acquired information. The KB receives input
from different components operating within the scope of the ARESIBO system and
encompasses a representation, formal editing and definition of the categories, properties and
relations between the concepts, data and entities that substantiate many domains of
discourse. The scope of the ARESIBO KB is to represent information and infer high-level
knowledge directly to the interested system components, implied to the end-user.
The rest of the document describes thoroughly the initial version of the ARESIBO data model
and KB and is structured as follows:

 Chapter 2 introduces the main concepts of both the Data model and the ARESIBO

Ontology

 Chapter 3 presents all the current status and the main aspects of the initial version of the

data model

 Chapter 4 analyzes the main ARESIBO knowledge base/ontology based on which all the

detected events will be represented

 Chapter 5 concludes the document with closing remarks and directions for improving the

data model and the ontology (including the accompanying tools and mechanisms)

towards the final version foreseen to be reported in D4.2.

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 10 of 73

2 Introduction

The ARESIBO system is an end-to-end solution for collecting information from multiple data
sources such as UxVs, detection sensors and legacy systems, processing and assessing
events and alerting accordingly the relevant personnel with proper messages. The multitude
of data originators and consumers in flexible configurations within the ARESIBO platform
mandates a robust framework for data connectivity, integration, processing and exchange
among the involved modules and services.
The data-source integration framework focuses on the development of one interoperability
layer which consists of software modules that collaborate, coordinate, develop and transfer
knowledge for a better situation awareness. More specifically, multiple input-output interfaces
of the system can send and receive standardized data structures as part of the information
transactions and services. The interoperability layer will rely on the development of these
standardized data structures following a predefined template, the ARESIBO data model.
Such instances will ensure an efficient and effective data flow in both directions, from and to
the main C2 system (Figure 1).

Figure 1: A general diagram of data flows within the ARESIBO System

As the identification of specific components and the finalization of the overall architecture is
currently on-going, the initial version for the corresponding data model will comprise the
basis of the central infrastructure for appropriate data exchanging and provide the
interoperability capacities. Towards this objective, a central message bus will be deployed
operating as the main means of exchanging data and processing results between the variant
services. Following a micro-services approach for data harmonization, each component is
autonomous to a large extend and all the interactions among the components are
accomplished via the central message bus. Thus, essentially, the central message bus
implements the desired interoperability layer. Hence, each component that processes
information that might be relevant and beneficial to other services will update specific topics
following one specific format. The data model reflects the common structures that are
processed by all system’s service.
In order to achieve efficient interoperability capabilities, ontologies play a significant role in
resolving semantic heterogeneity. The overall architecture incorporates the use of relevant
ontologies for explicit description of the semantics of information sources to facilitate the
communication between the different components of the architecture. Ontologies, commonly
referred as Knowledge Base (KB), serve as a knowledge representation model for incidents,

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 11 of 73

resources and tasks of interests that are reported in the context of the ARESIBO system.
Figure 2 represents the correlation between the interoperability layer and the relevant
ontologies in respect with the foreseen data flow procedure.

Figure 2: Data flows, within the context of the ARESIBO System, from a technical perspective.

The rest of the deliverable is structured as follows. Section 3 provides a detailed description
for the first version of the ARESIBO Data Model. The section is thoroughly analysed with
multiple sub-sections where the technical requirements are defined per component.
Additionally, existing standards and protocol adaptors are provided. Section 4 involves the
analysis of the ontology concept as well as an initial description of the first draft of the
ARESIBO ontology. The document concludes with the basic remarks and setups the
additional work that should be performed to attain the second and final version of the data
model.

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 12 of 73

3 Definition of the ARESIBO Data Model

The ARESIBO system relies on the operation of multiple types of both sensors (static and
dynamic) and UxVs, thus the unified system must be capable of processing vast amounts of
multimodal data while the transmission should be performed in distinct ways. Towards this
objective, the definition of an interoperability layer implemented through a data model is of
paramount importance as it will comprise the core of the system. In general, a data model
refers to an abstract model that organizes efficiently data elements, standardizes their
interconnection and identifies their properties with the real-world entities. Additionally, the
interoperability layer involves the definition of the required communication protocols so that
the deployed sensors and UxVs could exchange the desired information. Based on the
ongoing analysis performed on the architecture and data models that already exists, an
extended UCS 3.4 version might be the most efficient alternative to be adopted as the main
data model for the ARESIBO system as it covers multiple relevant domains like JAUS and
JANUS. Figure 3 presents the overall concept of the implementation for the interoperability
layer and the connection of the overall system with legacy systems through the appropriate
data model/connectors.

Figure 3: Logical diagram of the Interoperability layer.

3.1 Technical requirements defined per component

3.1.1 UAV and sensors (T3.2)

The main target of the relevant task (T3.2) is to build a reliable sensor infrastructure
according to the project’s challenging field operations. Within this context, specific data will
be exchanged, uplink (from GCS to the platform): piloting and control of the platform and
downlink (from the platform to the GCS): sensor data. The outcome of this process will
enable the integration of LAUV and marine sensors for communication and operation in
conjunction with the ARESIBO system, allowing mission monitoring, analysis and
visualization of collected data. More details are summarised in Table 1 below.

Table 1 – T3.2 component details

Component’s name: UAV and sensors

Consumes input from: Mission Editor/Swarming Mission Planner

 Sensor configuration

 Payload control

 Plans: A plan is a set of waypoints, where each waypoint

has a latitude, longitude, depth, speed, and payload.

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 13 of 73

Payload is the set of configurations of each sensor available

in the vehicle that must be activated at the waypoint.

 Commands: Actions that the vehicle must perform. For

example, start a plan, abort, etc.

HW components involved: UxV

 GCS

 Sidescan sonar

 Camera

 Sonars

 GPS

 Iridium

 GSM

Produces output: Sensor data streams

 Sidescan Raw

 JPG, MJPG

 UxVs telemetry: proprietary vehicle log with path, speed,

operating time, etc.

Involved standards/protocols: IMC
1
 (most important are the messages: Plan Specification,

Starting manoeuvre, Estimated State)

 WGS84 coordinate system

 STANAG 4586

 STANAG 4609

 OGC

3.1.2 Swarming robots and human-robot collaboration (T3.3)

The main focus of the relevant task (T3.3) is the development of a module able to exploit
fused and raw real-time data towards establishing a fully autonomous operational framework
for all surveying assets. The outcome of this task will be a module that will get as input the
mission details (provided by the Mission Editor – Section 3.1.7) and relevant telemetry data
and will produce as output the coordinates (WGS84 coordinate system) and the waypoints of
the involved UxVs. More details are summarised in Table 2 below.

Table 2 – T3.3 component details

Component’s name: Resource control

Consumes input from: Mission Editor: WGS84 coordinates, polygon ROI, user-

defined waypoints, assets participating, missionID, UxV

names, etc.

 Telemetry data

HW components involved: UxVs GCS

Produces output: Waypoints of the UxVs: altitude, longitude, latitude, kind of

1
 Available at: https://github.com/oceanscan/imc/blob/master/IMC.xml

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 14 of 73

turns

Involved standards/protocols: WGS84 coordinate system

3.1.3 Assets’ communication (T3.4)

The work that will be carried out under the task T3.4 involves the translation between the
ARESIBO data model and the platform specific communication protocols defined on the
basis of the different types of assets from different manufacturers. Input data are sourced
from the assets’ sensors (on board) to the GCS, while output data are produced from the
UAV sensors. The detailed information exchanged as input and output to the relevant
module is described in Table 3.

Table 3 – T3.4 component details

Component’s name: Assets communication

Consumes input from: Asset ID: vessel information – 3D location, speed, course,

heading

 Weather data: local wind speed, wind direction, pressure,

wave height, wave direction

 Tracks: id, source, type, label, 2D location, details

 Low/High Level Tasking: ID, type, 3D location, action

 Point of Interest (POI): ID, type, 2D location, action

 Area of Interest (AOI): ID, type, 2D location, action

HW components involved: Fixed-wing UAV GCS

 UUVs, USVs and UGVs

Produces output: Aircraft information: 3D location, attitude

 Aircraft status, battery, fuel, communication interfaces

(comms)

 Route information: waypoint list, active waypoint

 Sensor information: sensor orientation, field-of-view

 Sensor status: available, active

 Weather: local wind speed, wind direction, air pressure

 Video streams: MPEG-TS/H.264 + MISB 0601 KLV

(metadata)

 Still imagery: GeoTiff

 Tracks: see above (sources: EO, IR, AIS)

 Area of interest (AOI), Point of interest (POI): either coming

as tasking requests from external systems, or directly

introduced by the UAV operator

Involved standards/protocols: -

3.1.4 Voice and Video (T3.5)

The main goal of the task (T3.5) is the development of a communication network that will
ensure a secure real time video and voice exchange between the field units and the tactical
C2 center. The outcome of this task will be a communication network that ensures secure

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 15 of 73

and highly reliable bidirectional connectivity between all involved parties in the use cases.
Table 4 presents more technical details regarding this task. In addition, Viasat provides an IP
camera (‘AXIS Q6215-LE PTZ Network Camera’) mounted on the communication hub
(vehicle) with a video player on-board the vehicle able to play the real time video and audio
generated by the on-board IP camera.

Table 4 – T3.5 component details

Component’s name: Voice and Video

Consumes input from: On-board IP camera (Video stream and Audio stream)

 On-field cameras (Video stream and Audio stream)

 Field agents radio terminals (Voice)

HW components involved: On-board radio terminal

 Nomadic satellite antenna

 LTE module (cellular router)

 Mikrotik RB4011iGS+RM router

 Mikrotik CRS112-8P-4S-IN switch

Produces output: Video and audio streams from on-board IP camera

 Video and audio streams from on-field cameras

 Voice from field agents radio terminals

Involved standards/protocols: H.264

 H.265

 RTP/RTSP

 VoIP

3.1.5 Visual Object Detection (T3.6)

The main objective of the relevant task (T3.6) is to develop novel object recognition
algorithms that can identify multiple objects of interest (e.g., person, car, boat, ship, inflated,
speedboat, etc.), on the basis of visual data sourced from multiple types of sensors, such as
RGB, IR and thermal cameras. The relevant module shall take as input data (video streams)
from any kind of sensor providing the system with visual input and will produce as output
details about the objects detected (type, timestamp, geolocation, etc.). More details are
summarised in Table 5 below.

Table 5 – T3.6 component details

Component’s name: Visual Object Detection

Consumes input from: Video streams (over RTMP or RTSP)

 Telemetry data: GPS coordinates, timestamp

 Asset-based ID

HW components involved: UAV/UGV/cameras

 Any kind of sensor providing the system with visual input

Produces output: Video detections: objects detected, timestamp, geolocation,

confidence, bounding box, width, height, fps, asset ID

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 16 of 73

(sender)

Involved standards/protocols: RTMP

 RTSP

3.1.6 Semantic Representation and Reasoning (T4.1)

The main objective of the relevant task (T4.1) is to develop an ontology-based schema for
the semantic representation and reasoning of the heterogeneous data communicated within
the system, in order to structure and semantically enrich the involved content and to infer
new, enhanced information that can increase the situational awareness of the end user. The
relevant component will handle as input data from the visual detectors, spatiotemporal
information of the detected entities, of the operational assets, etc., and may produce as
output warnings or alerts that describe the detected incidents or conditions existing in an
area under surveillance, on the basis of specific rules and criteria described by the end
users. Details are summarised in Table 6 below.

Table 6 – T4.1 component details

Component’s name: Semantic Representation and reasoning

Consumes input from: Visual detector: detected entity (person(s), object(s)),

location of detected entity, distance from critical points

(shore, borders, etc.)

 Operational assets’ metadata: ID, status (available/not-

available), telemetry data

HW components involved: Cameras, UxVs

Produces output: Incidents

 Alerts

 Tasking

Involved standards/protocols: OWL-compliant representation

3.1.7 Mission Editor (T4.2)

The main focus of the relevant task (T4.2) is to provide a module that can support
functionalities related to the definition of missions, in terms of robots’ movement and their
undertaken actions. The definition of a mission will be realized through commands defined in
the Textual editor and/or actions in the Visual editor. Users will have the opportunity to
create, update, compile and validate their missions. The Mission Editor module will get as
input the availability and the status of the different operational UxVs and sensors and will
produce as output a robotic mission with details about the mission type, content and route
path as well as the id of the asset who will follow the proposed mission. More details are
summarised in Table 7 below.

Table 7 – T4.2 component details

Component’s name: Mission Editor

Consumes input from: Availability/status of UxV/sensor: asset ID, type, status

information (available/not-available)

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 17 of 73

 User input for the UxV assets involved in the missions

HW components involved: UAV/UGV/USV/UUV

Produces output: Robotic missions: mission id/type/content, vehicle id, route

path, sequence of waypoints

Involved standards/protocols: -

3.1.8 Simulation Engine (T4.3)

The simulation engine’s focus is to support the learning process of the operators by
recreating virtualized training environments. This system’s component considers a set of
parameters that includes setup configurations about the scenario, vehicles and sensors as
well as environmental conditions and generate the required outcomes for evaluation. More
details are summarized in Table 8 below.

Table 8 – T4.3 component details

Component’s name: Simulation Engine

Consumes input from: Mission editor

HW components involved: TBD

Produces output: Vehicle telemetry: position (latitude, longitude, altitude),

attitude (roll, pitch and yaw angles), speeds. The telemetry

can be "real" or "estimated", i.e., affected by the sensors'

navigation error.

 Sensor data: status of the sensor (on/off/working/not

working), target in sight, detections

 Environmental data: weather conditions (sun, rain, fog,

cloud, humidity, air temperature, water temperature, water

salinity, waves, water turbidity, etc.

Involved standards/protocols: STANAG 4603: Modelling and simulation architecture

standards for technical interoperability: HLA

3.1.9 Decision support functionalities (T4.4)

Task 4.4 aims to provide C2 operators with decision support functionalities. These focus on
effective resource and task management as well as generation relevant notifications. More
details are provided in Table 9 below.

Table 9 – T4.4 component details

Component’s name: Decision support

Consumes input from: Risk analysis

 Sensor Fusion Engine

HW components involved: -

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 18 of 73

Produces output: Type of action

 Event creation/update

 Mission creation/update

 Resources create/update

 Communication messages

Involved standards/protocols: EMSI (Missions, Resources, Events)

 CAP (Alerts, Notifications, Events)

 EDXL (Missions, Resources, Situation Assessment)

3.1.10 Sensor Fusion Engine (T4.5)

The main objective of the relevant task (T4.5) is to implement a module that will facilitate the
real-time integration (fusion) and interpretation of different types of raw data sources
originating from different sensors. The Sensor Fusion Engine will get at input numerical data
from any kind of sensor operating to the system and will produce as output fused data in the
form of real-time alerts. More details are summarised in Table 10 below.

Table 10 – T4.5 component details

Component’s name: Sensor Fusion Engine

Consumes input from: Sensors: numerical sensor streams (raw data), sensor type,

timestamp

 Telemetry data

HW components involved: Any kind of sensor providing the system with numerical

inputs

Produces output: Real-time alerts: alert id, type, category, severity, location,

timestamp, description

Incidents
detected/reported/handled:

 Alerts that can be detected based on numerical data

streams

Involved standards/protocols: UCS3.4

3.1.11 Risk Models (T4.6)

The main target of the relevant task (T4.6) is to develop a risk analysis framework for
incorporating the forecasting models that will be used for the assessment of risks and
potential threats. A semantic representation of the CIRAM (Common Integrated Risk
Analysis Framework) will be used for the description of potential risks and impact levels and
for the assessment of threats. The aforementioned module will get as input any numerical
data provided by the sensors and will produce risk predictions and recommendations to
mitigate the arisen threats. More details are summarised in Table 11 below.

Table 11 – T4.6 component details

Component’s name: Risk Models

Consumes input from: Sensors: numerical sensor streams (raw data)

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 19 of 73

 Telemetry data

HW components involved: Any kind of sensor providing the system with numerical

inputs

Produces output: Risk prediction (progress of a monitored situation): id, type,

category, severity, location, timestamp, description

 Recommendations to mitigate a risk

Incidents
detected/reported/handled:

 Risk predictions

Involved standards/protocols: Frontex CIRAM

3.1.12 XR visualisation (T5.1-4)

T5.1-4 focus on developing tools and services that achieve AR functionalities for the C2, field
officers and commanders. They are responsible for providing them with real-time contextual
information and conditions in various mediums utilizing projecting hardware. More details are
summarised in Table 12 below.

Table 12 – T5.1-4 component details

Component’s name: AR and time-based visualization

Consumes input from: ARESIBO engine

HW components involved: Realwear HMT-1

 Hololens2

Produces output: Video/voice stream, Aurio/Video

 NATO/other symbols

 Notes, Locations, Map, Radar info

Incidents
detected/reported/handled:

 NVG (Nato Vector Graphics)

 EXDL (Emergency Data exchange Language)

Involved standards/protocols: ARESIBO engine

3.1.13 Mission status (T6.2)

Mission Status will provide messages with information about the progression of the mission.
It contains telemetry data, the current status of a mission and can detect failures and
possible complications. More details are summarised in Table 13 below.

Table 13 – T6.2 component details

Component’s name: Mission status

Consumes input from: UGVs

HW components involved: UGV (cameras, LIDAR.GPS)

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 20 of 73

Produces output: MissionStatus: information about how the mission is being

done.

 Telemetry: time, current GPS coordinates, orientation wrt

North, speed

Involved standards/protocols: ROS

3.2 End-user requirements
As the discussions for the identification of the end-user requirements are currently
progressing, a dedicated end-user workshop was organized at during M8 (December 2019)
in order to specify the main topics of interests. The latter will drive the main requirements that
the technical partners should assess and consider during each development circle. Some
initial feedback from the end-users was accomplished through the collection of specific
information with the use of questionnaires and requirements tables. Thus, the initial
assessment resulted into the basic functionalities/capabilities and sensors that will be utilized
for the ARESIBO operational scenarios. An initial version of one common data model
analysed in this deliverable as well as the main legacy systems that will be incorporated in
the main framework were identified.

3.3 Existing Standards and Protocol adaptors

3.3.1 STANAG 4586

In 1998, a NATO Specialist Team comprising members of government and industry,
including Common Data Link (CDL) Systems, began work on NATO Standardization
Agreement 4586 (NATO 2012), a document conceived to standardize UCS interfaces to help
enable UAV systems interoperability (Marques, 2012). The objective of STANAG 4586 is to
specify the interfaces that shall be implemented in order to achieve the required Level of
Interoperability (LOI) according to the defined concept of operations (CONOPS). STANAG
4586 is the first step towards enabling GCS to control and monitor multiple types of
unmanned aircraft, improving overall cost by reusing GCS, and enabling competition at the
system level for complete GCS solutions.
The architecture proposed within the STANAG 4586 standard comprises the following
components (NATO, 2012):

 the Core UCS (CUCS), an interface to handle the UAV common/core processes.

 the Data Link Interface (DLI) that enable operations with legacy as well as future UAV

systems. In other words, the DLI enables the CUCS to produce and understand

messages for control, status, payloads and more.

 the Command and Control Interface (CCI) for UAV and UAV payload data

dissemination, to support legacy and evolving NATO C4I systems and architectures; and

 the Human Computer Interface (HCI) which defines the to support the interface to the

UAV system operators.

The STANAG 4586 message handling approach specifies that each message shall use a
wrapper structure with the following fields:

 Source port: Standard UDP header

 Destination port: Standard UDP header

 Packet length: Standard UDP header

 UDP Checksum: Standard UDP header

 Sequence #: Segmented data sequence

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 21 of 73

 Message length: 16bit Unsigned integer

 Source ID: ID of UAS element

 Destination ID: ID of UAS element

 Message Type: 16bit Unsigned integer

 Message Properties: Bitmapped field

 Optional Checksum: determines presence of errors.

Within the STANAG 4586 standard, generic messages are clustered as Functional Groups,
which can support the following entities/concepts:

 System ID: e.g., Vehicle ID

 Flight Vehicle Command: e.g. Air Vehicle Lights

 Flight Vehicle Status: e.g., Vehicle Configuration

 Flight Vehicle Payload Relevant: e.g., Inertial States

 IFF Command: e.g., IFF Code Command

 IFF Status: e.g., IFF Status Report

 ATC Interface Command: e.g., NAVAID Radio Command

 ATC Interface Status: e.g., NAVAID Radio Status

 Vehicle Auxiliary Command: e.g., Vehicle Auxiliary Command

 Vehicle Auxiliary Status: e.g., Vehicle Auxiliary Status

 Mission Command and Status: e.g., AV Route

 Subsystem Status: e.g., Heartbeat Message

 Miscellaneous Messages: e.g., Link Audio Status

 Payload Command: e.g., Terrain Data Update

 Payload Status: e.g., Terrain Data Request

 Weapons Command: e.g., Stores Management System Command

 Weapons Status: e.g., Stores Management System Status

 Data Link Discovery: e.g., Data Link Control Authorization Request

 Data Link Command: e.g., Link Health Command

 Data Link Status: e.g., Data Link to Vehicle ID Report

 Data Link Transition: e.g., Handover Status Report

 General Pre-connection Configuration: e.g., Field Configuration Request

 General Post-connection Configuration: e.g., Display Unit Request

 Autonomy: e.g., Area Definition

 VSM Forced Commands: e.g., Field Change Float Command

 Draw Interface: e.g., Draw Line

Within each Functional Group, a list of more specific fields (messages) is defined. Moreover,
complex messages can be composed by combining one or more messages from different
Functional Groups. For example, the messages defined in the “Mission Command and
Status Messages” (Table 14) shall compose the Mission Command and Status Functional
Group of messages. A detailed list of messages and functional groups can be found in
(NATO, 2012).

Table 14 – Mission Command and Status Messages

New
Msg#

Old
Msg#

Description Push/Pull Source Allowable Max
Latency (msec)

13000 800 Mission Upload Command Push CUCS 1,000

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 22 of 73

13001 801 AV Route Push/Pull CUCS/VSM
2
 2,000

13002 802 AV Position Waypoint Push/Pull CUCS/VSM 2,000

13003 803 AV Loiter Waypoint Push/Pull CUCS/VSM 2,000

13004 804 Payload Action Waypoint Push/Pull CUCS/VSM 2,000

13005 805 Airframe Action Waypoint Push/Pull CUCS/VSM 2,000

13006 806 Vehicle Specific Waypoint Push/Pull CUCS/VSM 2,000

14000 900 Mission Upload/Download Status Push VSM 2,000

 901-
999

Unassigned message types in
the range of 13000 – 14999 are
reserved

3.3.2 STANAG 4609

The Standardization Agreement 4609 (NATO, 2009) aims to enable and achieve
interoperability of motion imagery (MI) systems in a NATO Combined Service Environment.
Motion imagery enhances the capabilities of the commanders and operators and helps them
meet efficiently the operational and tactical objectives for intelligence, reconnaissance and
surveillance. STANAG 4609 is intended to provide common methods for exchange of MI
across systems within and among NATO nations.
More specifically, STANAG 4609 describes the requirements about compressed,
uncompressed and related motion imagery sampling structures, motion imagery time
standards, motion imagery metadata standards, interconnections, and common language
descriptions of motion imagery system parameters. It is based on commercial systems and
components designed on the basis of existing open standards for providing interoperability
between NATO compliant services.
The core attributes of STANAG 4609 for motion imagery are described in (NATO, 2009). The
cornerstone is MPEG-2, since both visible light and infrared MI systems shall be able to
decode all MPEG-2 transport streams with MPEG-2 compressed data types (Standard
Definition, Enhanced Definition, High Definition) up to and including all H.264 compressed
data types. The collection of standards comprises of the definitions of:

 sampling structures, including standards for analog video migration, digital motion

imagery and high definition television systems.

 compression systems, including standards for the Digital Motion Imagery Compression

Systems, Use of MPEG-2 System Streams, Motion Imagery Still Frames, and more.

 metadata, including standards for the Motion Imagery Metadata Dictionary Structure,

Time Code Embedding, Time Reference Synchronization, Unmanned Aerial System

(UAS) Datalink Local Metadata Set, and more; and

 file formats, including standards for the use of MPEG-2 System Streams for Simple File

Applications, Advanced File Format and Timing Reconciliation Universal Metadata Set for

Digital Motion Imagery.

3.3.3 JAUS/JANUS

Joint Architecture for Unmanned Systems (JAUS) standard is an architecture that enables
the communication with unmanned air, ground and sea vehicles. JAUS is built upon five
characteristics: mission isolation, computer hardware independence, technology
independence, and operator use independence so that applicability to the entire domain of
unmanned systems is achieved. JAUS was originally proposed to provide an open
architecture for the domain of Unmanned Ground Robots. Recently, the standard has
expanded to cover additional domains and capabilities to better defined based on a Service
Oriented Architecture (Kent et al, 2014). JAUS standard is divided into the Domain Model,
which provides the objectives, and the Reference Architecture, which provides engineering

2
 VSM stands for Vehicle Specific Module

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 23 of 73

specifications for the architecture framework, a message format definition and a set of
standard messages.
The top entity of the Architecture Framework is identified as the System. A JAUS System is
structured as a 3-tiered logical hierarchy consisting of Subsystems, Nodes, and
Components. A System might be consisted of one or more Subsystems. The latter typically
represents a physical entity in the system network, such as an unmanned vehicle or operator
control unit. Subsystems can be divided into Nodes, which represent a physical computing
endpoint in the system. As for example, a Node might be a computer or microcontroller
within a Subsystem. In additions, Nodes can host one or more Components, which are
commonly applications or threads running on the Node. Finally, Components are constituted
by one or more Services which eventually provide valuable functionalities to the system
(Serrano et al., 2015), (Galluzo and Kent 2011). A JAUS Component is the only addressable
entity within the JAUS System and is uniquely identified using a dotted address consisting of
SubsystemID.NodeID.ComponentID. There are two special JAUS entities required for routing
messages. At the highest level, a communicator is the portal for all messages within a
Subsystem. Similarly, a Node manages the portal for all messages within a Node.
Communicators and node managers can be viewed simply as routers. Such logical structure
is presented in Figure 4.

Figure 4: Communication within a JAUS System

The information is exchanged in the form of Messages having 16-bit headers and can be
categorized into seven distinct classes: (i) Command, (ii) Query, (iii) Inform, (iv) Event setup,
(v) Event notification, (vi) Node management and (vii) Experimental having 16-bit headers
that define the below characteristics.

 Message Properties

 Command Code

 Destination Instance ID

 Destination Component ID

 Destination Node ID

 Destination Subsystem ID

 Source Instance ID

 Source Component ID

 Source Node ID

 Source Subsystem ID

 Data Control

 Sequence Number

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 24 of 73

Standardization Agreement 4748, Digital Underwater Signalling Standard for Network Node
Discovery & Interoperability, aims to enable and achieve communication interoperability
between underwater military (UUVs) and civilian maritime assets and sharing information
among various heterogeneous sensors, ships, submarines, UAVs, gateway buoys and
sensor networks. To this end, JANUS is proposed as the physical standard, which specifies
the layer-coding scheme allowing the transmittance of information in a common format that
can be decoded by compliant assets. The schema, that is Frequency Hopped (FH) Binary
Frequency Shift Keying (BFSK), is simple to implement and robust to temporal and
frequency fading in the harsh UW acoustic propagation environment.
In the JANUS FH-BFSK scheme, binary data bits are mapped into one of a pair of time-
windowed CW tones of unspecified phase, selected from 13 evenly spaced tone pair choices
spanning the frequency band, having the initial frequency band allocation at 9440 – 13600
Hz. The process to generate a Janus Packet, is shown in the following diagram (Figure 5).

Figure 5: Block diagram of the JANUS Baseline Packet encoding process

3.3.4 UCS and UCS 3.4

The Unmanned Aircraft System (UAS) Control Segment (UCS) Architecture is a software
interface, data-model, and business system architecture that defines the rules and
conventions for developing interoperable software components for UAS Ground Control
Stations (GCS). The operational objectives include support for both UA platform and sensor
C2, sensor product availability, and UA status.
UCS architecture is developed with the aim of enabling integration, reuse of services
between programs and Services along with the decrease of costs of unmanned systems.
STANAG 4586 was a first step towards interoperability of control segments and, since a
single common monolithic architecture renders upgrades slower and more expensive, UCS
Architecture progressed it by defining an open and scalable infrastructure that supports
flexible integration of ground control system services across a variety of deployment
scenarios.
More specifically UCS Architecture:

 Identifies additional system and equipment use cases.

 Defines a modeling framework for the specification, integration, implementation and
deployment of control station software.

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 25 of 73

 Is designed on a platform independent model, which allows implementations on
different infrastructures.

 Includes an open Application Architecture Data Model, which is based on real-world
entities, describes the information required by UCS domains in their internal and
external interactions and define the semantics of all interoperable implementations

 Defines and validates the Application Architecture Domain Model

 Updates the requirements for the UCS Architecture tool environment and UCS
Architecture Quality Management System

 Includes airworthiness, system safety and Information Assurance views.
In order to achieve and maintain interoperability of compliant UCS systems, a Model Driven
Architecture is usually selected. It separates the UCS business logic and data from the
underlying technology of the application platform and the software runtime architecture by
expressing the application software as a set of Platform Independent Models (PIMs) and
then transformed into Platform Specific Models (PSMs) taking into account platform and
software runtime architecture choices. The latter is presented in Figure 6 .

Figure 6: UCS Model Driven Architecture Process

3.4 ARESIBO Data Model
All services and modules that are planned to operate within the ARESIBO system will use
the proposed structures defined in the ARESIBO data model in order to exchange data. For
the first prototype of the ARESIBO internal data model, a set of messages was defined,
following some basic rules:

 the definition of messages will be mainly based on the UCS3.4 data model,

 whenever is required, the extension of the UCS3.4 will be used, as this was proposed in

the ROBORDER EU-funded project (ROBORDER 2017).

 whenever needed, new data models were proposed as an extension of all the above.

These definitions will be mainly considered as pure definitions of the ARESIBO data

model from the beginning.

For every concept that follows, each included table comprises a result of the end-user
requirements assessment which were collected from all the technical partners. Each
responsible technical partner, either a UxV manufacturer or a service provider, identified the
main topics of interests as well as the corresponding fields and their length. Such structure is
particularly essential so as each main component could be able to consume data and
produce knowledge.

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 26 of 73

3.4.1 Plan

This field contains instructions for a specific UxV operating in a mission. The instructions
include information regarding the waypoints that the UxV should follow and commands
(on/off, gimbal moves, etc.) concerning the payload and sensors that it carries. The
description that follows is not included in the UCS3.4, so it should be considered as a
potential extension.

Table 15 – Plan structure

Field Type Length Units Description

vehicle_id int 4 None vehicle identification

mission_id int 4 None a unique identification number, describing a
mission that is likely to contain more than
one UxVs

speed float 4 m/s the proposed speed for a mission for a
specific UxV

route_path_segment array of
structures

- - definition of every path segment included in
a mission

sensors
3
 structure - - a structure containing commands for the

UxV payload

Table 16 – route_path_segment structure

Field Type Length Units Description

route_path_segment_id int 4 None a unique identification number, describing
each route_path_segment

waypoint structure - - a structure containing WGS84 coordinates
and special instructions for a mission
point to be reached

3.4.2 Waypoint

This field describes a way point used for the guidance of UxVs during a mission. It contains
the exact position that a UxV should approach (formatted in WGS84 coordinates) and a
characterization of the way point to provide instructions for those that need special treatment
to be approached. A detailed description of the involved fields is presented in Table 17. Note
that the field altitude can get both positive and negative values, in order to provide altitude
and depth information, depending on the type of UxV used.

Table 17 – WaypointType structure

Field Type Length Units Description

altitude float 4 m indicates the altitude of the Waypoint

position Position2DTy
pe

16 - position of waypoint

waypoint
_kind

byte 1 Enumer
ated

type of waypoint

WaypointKindEnumTypeLDM:
APPROACH = 0,
APPROACH_FINAL_POINT = 1,
APPROACH_INITIAL_POINT = 2,
HARD_DITCH = 3,
NAV_ONLY = 4,
PASSIVE = 5,
RUNWAY_LIMIT = 6,

3
 It should be noted that the sensors structure remains unidentified in the current version, and will be

specified in future versions of the data model, on the basis of the requirements and the capabilities
that the actual involved sensors will have.

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 27 of 73

RUNWAY_START = 7,
RUNWAY_THRESHOLD = 8,
TAKEOFF = 9,
TAKEOFF_FINAL_POINT = 10,
TAKEOFF_INITIAL_POINT = 11,
TAXI = 12,
TOUCHDOWN = 13

3.4.3 Command/Action

Whenever a UxV that can support teleoperation needs to be tasked, guided, or steered, a
direct steering command is provided with this structure. The typical use case is when the
command is given by a module that is detached by the vehicle simulator, in which case the
latter is in charge of computing and updating the dynamic/kinematic model of the UxV and
receive the reference commands from the guidance module. The guidance module sends
reference commands using the VehicleSteeringCommand data type.

Table 18 – VehicleSteeringCommand structure

Field Type Length Units Description

platform_id Integer32 4 - unique ID of the platform

target_speed Float64 8 m/s commanded forward speed

target_heading Float64 8 deg commanded heading wrt True North

target_altitude Float64 8 m commanded altitude wrt the mean sea
level (negative values for depth below
water surface)

3.4.4 Payload

Payload is the set of configurations of each sensor available in the vehicle that must be
activated at each waypoint. Such structures provide better flexibility in operating more
appropriate the used equipment. The structure provides basic information about the status
and the type of the available payload.

Table 19 – PayloadType structure

Field Type Length Units Description

next_avai
lability_ti
me

double 8 s nextAvailabilityTime is a TimeType which specifies
the next time the payload carried by this air vehicle
will be available.

payload PayloadType 324+ - payload is a PayloadType which specifies the
payload carried by this air vehicle for each
PayloadType.

payload_
recorder

PayloadData
RecorderTyp
e

106 - payloadRecorder is a PayloadDataRecorderType
which specifies the payload data recorded carried
by this air vehicle for each PayloadType.

payload_
report

SubsystemR
eportType

153? - payloadReport is a SubsystemReportType which
specifies the information about the definition and
location of the report for PayloadType.

pedestal PedestalType 51 - pedestal is a PedestalType which specifies the
attachment point for PayloadType.

power_st
atus

byte 1 Enume
rated

powerStatus is a PowerStatusType which specifies
the power state for PayloadType. The power state
is specified as an enumeration: {power_on,
power_standby, power_off, emergency_power}
PowerStatusEnumTypeLDM:
EMERGENCY_POWER = 0,
POWER_OFF= 1,
POWER_ON = 2,
POWER_STANDBY = 3

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 28 of 73

system_o
perating_
mode

byte 1 Enume
rated

systemOperatingMode is a
PayloadSystemOperatingModeType which
specifies the operational state for PayloadType.
The operational
state is specified as an enumeration: {off,
initializing, standby, active, calibrate, running_bit,
on, inactive, deployed, stowed, caged}
PayloadSystemOperatingModeEnumTypeLDM:
ACTIVE = 0,
CAGED = 1,
CALIBRATE = 2,
DEPLOYED = 3,
FAULT = 4,
INACTIVE = 5,
INITIALIZING = 6,
OFF = 7,
ON = 8,
OPERATE = 9,
RUNNING_BIT = 10,
SHUTDOWN = 11,
STANDBY = 12,
STARTUP = 13,
STOWED = 14

temperat
ure

float 4 m/s temperature is a TemperatureType which specifies
the temperature for PayloadType

Table 20 – PayloadDataRecorderType structure

Field Type Length Units Description

recording
_location

TimeAddress
CapabilityTyp
e

24 - recordingLocation is an AddressCapabilityType
which specifies the location of data recording for
PayloadDataRecorderType.

recording
_speed

CommsRate
MegabitsPer
SecondCapa
bilityType

28 - recordingSpeed is a
CommunicationRateCapabilityType which specifies
the data recording speed for
PayloadDataRecorderType.

recording
_status

byte 1 Enume
rated

recordingStatus is a RecordingStatusType which
specifies the status of the data recording for
PayloadDataRecorderType. The state is specified
as an enumeration: {stop, ready, recording, play,
seek}
RecordingStatusEnumTypeLDM:
PLAY = 0,
READ_Y = 1,
RECORDING = 2,
SEEK = 3,
STOP = 4

replay_lo
cation

TimeAddress
CapabilityTyp
e

24 - replayLocation is an AddressCapabilityType which
specifies the location in the data recording for the
replay of data for PayloadDataRecorderType.

replay_s
peed

CommsRate
MegabitsPer
SecondCapa
bilityType

28 - replaySpeed is a
CommunicationRateCapabilityType which specifies
the data recording replay speed for
PayloadDataRecorderType.

replay_st
atus

byte 1 Enume
rated

replayStatus is a ReplayStatusType which
specifies the status of the data recording replay for
PayloadDataRecorderType. The status is specified
as an enumeration: {Stop, ActiveNotReady,
ReadyPause, Reading}

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 29 of 73

ReplayStatusEnumTypeLDM:
ACTIVE_NOT_READY = 0,
READING = 1,
READY_PAUSE = 2,
STOP = 3

Table 21 – SubsystemReportType structure

Field Type Length Units Description

is_detaile
d

bool 1 None isDetailed is a BooleanType which specifies the
state of the details of the subsystem status report
for SubsystemStatusReport.

mission_
communi
cations_s
tate

byte 1 Enume
rated

missionCommunicationsState is a
MissionCommunicationStateType that specifies the
state of communications between a system and its
controlling system for the SubsystemReportType.
MissionCommsStateEnumTypeLDM:
ACTIVE = 0,
EMCON = 1,
LOST = 2,
PLANNED_LOST = 3

report_te
xt

string 50? None reportText is a DescriptionType which specifies the
text describing the subsystem status report for
SubsystemStatusReport.

report_te
xt_uri

string 50? - reportTextURI is a DescriptionType which specifies
the URI context for the location of subsystem
status report for SubsystemStatusReport.

source byte 1 Enume
rated

source is a SystemSourceType that specifies
whether the source for the SubsystemReportType
is an actual system data or an estimation service.
SystemSourceEnumTypeLDM:
ACTUAL = 0,
ESTIMATED = 1

vehicle_s
pecific_re
port_uri

string 50? - vehicleSpecificReportURI is a DescriptionType
which specifies the URI context for the location of
the vehicle specific report for
SubsystemStatusReport

Table 22 – PedestalType structure

Field Type Length Units Description

attachme
nt_orient
ation

Orientation3
DType

12 - attachmentOrientation is a
OrientationCapabilityType which specifies the
angular position or attitude for PedestalType.

attachme
nt_status

byte 1 Enume
rated

attachmentStatus is an AttachmentStatusType
which specifies the attachment status for
PedestalType. The status is specified through an
enumeration: {loaded, discarded, released,
jettisoned}
DISCARDED = 0,
JETTISONED = 1,
LOADED = 2,
RELEASED = 3

is_stabili
zed

bool 1 None If the Pedestal provides the ability to actively
cancel out host platform vibrations or rigid body
motion (i.e. fix the Pedestal orientation in the
inertial frame) then this element is TRUE.

number_
of_axes

byte 1 None Indicates the number of rotational degrees of
freedom the Pedestal.

pointing_ Orientation3 12 - pointingOrientation is a OrientationCapabilityType

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 30 of 73

orientatio
n

DType which specifies the pointing angular position or
attitude for PedestalType.

pointing_
orientatio
n_velocit
y

OrientationVe
locityType

12 - pointingOrientationVelocity is a
OrientationVelocityCapabilityType which specifies
the rate at which the pointing angular positions or
attitude is changing for PedestalType.

relative_
position

Position3dPla
tformXYZTyp
e

12 - relativePosition is a PositionType specifying the
payload's location relative to the navigational
center of the vehicle. This is the offset of the
payload relative to the vehicle position.

Table 23 – CommsRateMegabitsPerSecondCapabilityType structure

Field Type Length Units Description

comms_
rate

float 4 Mbit/s

comms_
rate_do
main

CommsRateM
egabitsPerSec
ondSpecificati
onType

12 - Defines the following: lower_limit (float num),
step_size (float num) and upper_limit (float_num),
all expressed in Mbit/s

size_set
_point

CommsRateM
egabitsPerSec
ondRequireme
ntType

12 - The same description goes here

Table 24 – Orientation3DType structure

Field Type Length Units Description

roll_x float 4 rad

pitch_y float 4 rad

yaw_z float 4 rad

Table 25 – OrientationVelocityType structure

Field Type Length Units Description

pitch_rate_y float 4 rad/s pitchRateY specifies the rate of change of the platform's
rotation about the lateral axis (e.g. the axis parallel to the
wings) in a locally level, XYZ coordinate system centered
on the platform

roll_rate_x float 4 rad/s rollRateX specifies the rate of change of the platform's
rotation about the longitudinal axis (e.g. the axis through
the body of an aircraft from tail to nose) in a locally level,
XYZ coordinate system centered on the platform

yaw_rate_z float 4 rad/s yawRateZ specifies the rate of change of the platform's
rotation about the vertical axis (e.g. the axis from top to
bottom through an aircraft) in a locally level, XYZ
coordinate system centered on the platform

Table 26 – Position3dPlatformXYZType structure

Fiel
d

Type Length Units Description

x_a float 4 m xA specifies the X-axis position which is in the forward
(toward the nose) direction

y_a float 4 m yA specifies the Y-axis position which is in the right
(starboard) direction

z_a float 4 m zA specifies the Z-axis position which is in the down
(toward the centre of the Earth) direction

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 31 of 73

3.4.5 Mission

The Mission Editor module will be able to output and share planned routes with the UxVs.
These routes will consist of lists of waypoints for the UxVs to follow and they will be
translated to each UxV’s specific protocol and sent to its Control Station. The UxV pilots will
validate the mission before it is uploaded to the vehicles. Once the mission is validated (and
eventually tweaked) it will be published back as an active route using the same message
type.

Table 27 – Mission structure

Field Type Length Units Description

mission_id int 4 None Mission identifier

detailed bool 1 None Indicates whether the route is the result of detailed
mission planning (TRUE), or is a simple stick route
(FALSE).

first_path_i
n_route

RouteP
athT
ype

142183
+

- Indicates the unique ID of the first Path of the Route.
The first Path of the Route would generally be of
PRIMARY Path Type.

route_kind byte 1 Enumer
at ed

Type of route path. (LineSegmentEnumTypeLDM)
GREAT_CIRCLE = 0,
RHUMB = 1

route_path RouteP
athTyp
e

142183
+

- A series of path segments. A route can contain
many paths. Some paths provide alternate routes
and contingency routes which branch from the
primary path. Other paths can be standalone,
disconnected paths. Elements given here are not
necessarily in mission/flight order; it is necessary to
follow the linkages provided in NextPathSegment
and/or ConditionalPathSegment to traverse the
segments in mission/flight order.

Datastructu
reType

string 32 - Describes the type of structure

SenderID string 16 - Describes the unique id of the data sender

Mission_Ty
pe

array Contains the fields that will be used for the mission:
Singles, Groups, Coverage

Table 28 – RoutePathType structure

Field Type Length Units Description

first_segment
_in_path

Segmen
tTy
pe

225 - Indicates the unique ID of the first Path Segment of
the Path.

metrics MetricsT
yp e

34769 - Indicates metrics related to the "cost" to complete the
Path. When the Path is of EGRESS Path Type, this
element should at a minimum specify fuel amount
needed to egress, including any reserve desired for
landing. When the Path is of INGRESS Path Type,
this element should at a minimum specify the fuel
amount that will be available at the end of the ingress
Path. The allocators and route planners for mission
operations will use these fuel amount to ensure that
sufficient fuel remains upon the transition to

the egress Path.

path_id RoutePa
thT ype

142183
+

- Indicates the unique ID for this Path. Other Paths or
Path Segments may branch to this path by referring
to this ID.

path_kind byte 1 Enumerat
e d

Type for this path. PathKindEnumTypeLDM:
ALTERNATE = 0,
EGRESS = 1,

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 32 of 73

EMERGENCY_LANDING = 2,
HARD_DITCH = 3,
INGRESS = 4,
LANDING = 5,
LOSS_OF_COMM = 6,
PRIMARY = 7,
RETURN_TO_BASE = 8,
SOFT_DITCH = 9,
TAKEOFF = 10

route_path_s
egment

RoutePa
thS
egment
Typ e

107180
+

- A PathSegment is defined from the previous path
segment EndPoint (or current vehicle state if no
previous path segment) to the current path segment
EndPoint. Elements given here are not necessarily in
mission/flight order; it is ecessary to follow the
linkages provided in NextPathSegment and/or
ConditionalPathSegment to traverse the segments in
mission/flight order.

start_time double 8 Indicates the start time of the first Path Segment of
this Path. The start time of subsequent Path
Segments is the end time of the previous Path
Segment.

vehicle_id string 16 - Describes the unique id / name of each UxV

speed int 4 m/s Describes the speed for each UxV set by the user

Sensors Array - Contains the sensor data for each UxV

time int 4 None Sensor time of deployment

sensor_type string 16 Describes the type of the sensor

sensor_statu
s

string 16 States the status of the sensor:
Activated,
Deactivated.

Scanning_de
nsity

int 4 None Describes the radius that a group of UxV’s is able to
cover

Coverage_C
ardinality

int 4 None Declares how many vehicles participate in a
Coverage mission

Table 29 – SegmentType structure

Field Type Length Units Description

foreign_se
gment_id

ForeignKey
Type

60 - foreignSegmentID is a ForeignKeyType that is a
used to specify a foreign key for a segment.

line LineSegme
ntRequire
mentType

112 - line is a LineRequirementType from which route
paths and routes are composed.

path_seg
ment_lock
ed

bool 1 None pathSegmentLocked is a BooleanType that specifies
that the vehicle path is locked and cannot be
modified for the SegmentType.

path_seg
ment_mod
ified

bool 1 None pathSegmentModified is a BooleanType that
specifies that the vehicle path has been modified
since creation for the SegmentType.

path_seg
ment_sour
ce

byte 1 Enumerat
ed

pathSegmentSource is a PathSegmentSourceType
that specifies the source of the path as either
operator defined or autorouted for the SegmentType.
(PathSegmentSourceEnumTypeLDM)
AUTO_ROUTED = 0,

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 33 of 73

OPERATOR_DEFINED = 1

version string 50? None version is a UniqueIDType that
indicates a segment's version ID.

path_seg
ment_id

int 2? None Pathe_segment_id is a UniqueIDType that indicates
a segment's path ID.

waypoint_
kind

byte 1 Enumerat
ed

Type of Waypoint.
WaypointKindEnumTypeLDM:
APPROACH = 0,
APPROACH_FINAL_POINT = 1,
APPROACH_INITIAL_POINT = 2,
HARD_DITCH = 3,
NAV_ONLY = 4,
PASSIVE = 5,
RUNWAY_LIMIT = 6,
RUNWAY_START = 7,
RUNWAY_THRESHOLD = 8,
TAKEOFF = 9,
TAKEOFF_FINAL_POINT = 10,
TAKEOFF_INITIAL_POINT = 11,
TAXI = 12,
TOUCHDOWN = 13

altitude float M Describes the altitude set by the user

position object - Contains the coordinates of each waypoint

latitude float None latitude

longitude float None longitude

3.4.6 MissionStatus/MissionChange

MissionStatus will provide messages with information about how the mission is progressing.
It contains telemetry data, the current status of a mission and can detect failures and
possible complications.

Table 30 – MissionStatus structure

Field Type Length Units Description

id String 20

time String

type String enumarated Specifies the type of the message

latitude double 8 Latitude of the vehicle (if provided)

longitude double 8 Longitude of the vehicle (if provided)

orientation float 4 degree specifies the angular position of the UxV

speed float m/s specifies the magnitude of the
velocity

current_status byte 1 enumarated specifies the status of the given mission

3.4.7 TelemetryData

Telemetry provides the ARESIBO platform with real-time real or estimated position, speed
and orientation of the different UxV assets, improving situational awareness. Each vehicle
will transmit its own telemetry to its protocol translator, which will inject it into the ARESIBO
data distribution system as a kinematic platform message. The following structure defines
telemetry information, i.e., a collection of data related to the current pose, velocity and
acceleration of an asset. Its definition has been made on the basis of the VehicleType data

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 34 of 73

model from UCS3.4, by adjusting the content as a new structure and by excluding also some
of its non-applicable fields to our domain of interest.

Table 31 – TelemetryData structure

Field Type Length Units Description

vehicle_id int 4 None vehicle identification

location Position3
DType

24 None specifies the position of the GroundVehicle in
WGS_84 coordinates

location_er
ror

Position3
DCovarian
ceType

32 None specifies the variance is the location attribute of the
GroundVehicleType

velocity VelocityTy
pe

12 m/s specifies the rate of change in
position in terms of ground speed components for
GroundVehicleType

acceleratio
n

Accelerati
onType

12 m/s specifies the longitudinal, lateral, and vertical
acceleration components for GroundVehicleType

attitude AttitudeTy
pe

12 rad specifies the angular positions for
GroundVehicleType. Angular positions are normally
specified as roll, pitch, and yaw

attitude_vel
ocity

VelocityTy
pe

12 rad/s specifies the pitch, roll, and yaw rate components for
GroundVehicleType

attitude_ac
celeration

Accelerati
onType

12 rad/s² specifies the pitch, roll, and yaw acceleration
components for GroundVehicleType

speed float 4 m/s specifies the magnitude of the velocity (i.e., speed)

attitude_rat
e

float 4 rad/s specifies the angular rate of change of heading for
GroundVehicleType. Angular rate change of the
projection of the longitudinal axis onto the horizontal
plane, and that projection's bearing relative to true
North

course float 4 rad specifies the direction of the platform's motion
relative to true north. The measurement is stated in
radians between 0 and 2 pi

heading float 4 rad represents a projection of the longitudinal axis of the
platform onto the horizontal plane, relative to true
north. The measurement is stated in radians between
-pi and pi

Table 32 – Position3DCovarianceType structure

Field Type Length Units Description

covariance double [] 9N m² Covariance for Position3DType

Table 33 – InertialType structure

Field Type Length Units Description

domain_vel
ocity

VelocityTy
pe

12 m/s

Vehicle's velocity in the current operating domain of
the system.

ground_vel
ocity

VelocityTy
pe

12 m/s

Vehicle's velocity in the current operating domain of
the system.

orientation Orientatio
nType

12 rad Euler Angle Sequence describing the orientation of
the vehicle in the order yaw, pitch, roll. The angles
are given in a locally level, North-East-Down
coordinate system centred on the vehicle

position Position3
D_WGS8
4_Tuple

12 - Physical location of the referenced item in geospatial
coordinates

position_un
certainty

Uncertaint
yType

12 m/s Uncertainty of the physical location of the referenced
item

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 35 of 73

Table 34 – OrientationType structure

Field Type Length Units Description

pitch_y float 4 rad -

roll_x float 4 rad -

yaw_z float 4 rad -

3.4.8 AreaOfInterest

An area of interest is a geographic area and airspace that includes the objective of the
operation or could impact on the successful conduct of that operation. The ARESIBO
operators may transmit an area of interest through the ARESIBO central system to the UxV
Control Station, which can be associated to a command (e.g. initiate a search pattern). On
the other hand, the UxV operating crew can send an AOI back to the ARESIBO system, as
an alert to signal e.g. interesting activity such as a detected target in that area.

Table 35 – AreaOfInterest structure

Field Type Length Units Description

overlay_id int 4 None Unique identifier used to create a new overlay or
update an existing one

major_axis float 4 m majorAxis specifies the length of the rectangle's semi-
major axis, which is drawn away from the
referencePoint along the bearing defined by
orientationOfMajorAxis. (rectangle)

minor_axis float 4 m minorAxis specifies the length of the rectangle's semi-
minor axis, which is drawn away from the
referencePoint along the bearing defined by
(orientationOfMajorAxis minus 0.5 pi). (rectangle)

orientation_of
_major_axis

float 4 rad orientationOfMajorAxis specifies the orientation of the
rectangle as the angle between the semi-major axis
and true north. (rectangle)

reference_poi
nt

Positi
on2D
Type[]

16N - referencePoint specifies the location of the
intersection of the two axes of the rectangle at a
specific time.

altitude float 4 m Altitude

ui_type byte 1 Enum
erated

0:map – map overlay
1:video – video overlay
MAP = 0,
VIDEO = 1

type byte 1 Enum
erated

0:poi – Point of interest
1:polygon – polygon detection
2:rectangle – rectangle detection
3:path – mission planning waypoints
POI = 0,
POLYGON = 1,
RECTANGLE = 2,
PATH = 3

source string 100 None Origin of the overlay – software provider or algorithm

source_type string 50 None -

label string 50 None Mouse over tooltip header

label_image byte[] N None Mouse over tooltip image

data_type byte 1 Enum
erated

0:default – creates the overlay object using the
Mission system default UI elements (color and/or
image)
1:custom – uses the values from color or ui_resource
fields to represent the overlay object
2:symbollib – uses a symbol library for the object
representation

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 36 of 73

DEFAULT = 0,
CUSTOM = 1,
SYMBOLLIB = 2

color byte[] 3 None RGB values

ui_resource byte[] N None Image byte[] value

3.4.9 AerialVehicleType
The AerialVehicleType structure defines details about vehicles operating in the air. This
structure constitutes the same data model as the VehicleType proposed in the extended
version of UCS3.4, since the latter standard is only UAV-oriented. The aforementioned
structure incorporates details about the id, type, acceleration, altitude, attitude, fuel info,
heading, speed, etc. More details are given in the following table.

Table 36 – AerialVehicleType structure

Field Type Length Units Description

vehicle_id int 4 None Vehicle identification

cucs_id int 4 None CUCS identification

acceleration Accel
eratio
nType

12 - specifies the longitudinal, lateral, and vertical
acceleration components for AerialVehicleType

altimeter_pres
sure

float 4 - realizes PressureType: an Entity used to describe a
pressure, defined as follows.
Pressure is the weight or force per unit area that is
produced when something presses or pushes against
something else

altitude float 4 m altitude in meters

altitude_type byte 1 Enum
erated

defines altitude type (reference frame) for all altitude
related fields in this message.
PRESSURE = 0,
BARO = 1,
AGL = 2,
WGS_84 = 3

altitude_rate float 4 m/s specifies the estimated vertical velocity for
AerialVehicleType

atc_call_sign string 32 None ATC Call Sign

attack_angle float 4 rad specifies the angle-of-attack for AerialVehicleType.
Angle of attack specifies the angle between the chord
line of the wing of a fixed-wing aircraft (or the plan of
the main rotor) and the vector representing the
relative motion between the aircraft and the
atmosphere.

attitude Attitud
eType

12 - specifies the angular positions for AerialVehicleType.
Angular positions are normally specified as roll, pitch,
and yaw.

attitude_accel
eration

Accel
eratio
nType

12 - specifies the pitch, roll, and yaw acceleration
components for AerialVehicleType.

attitude_veloci
ty

Veloci
tyTyp
e

12 None specifies the pitch, roll, and yaw rate components for
AerialVehicleType.

bingo_fuel float 4 kg specifies the amount of fuel that would allow a safe
return to base of intended landing for
AerialVehicleType.

center_of_gra
vity

float 4 m specifies how far the centre of gravity is from the nose
of the vehicle.
point at which this AerialVehicleType is balanced

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 37 of 73

course float 4 rad specifies the direction of the platform's motion relative
to true north. The measurement is stated in radians
between 0 and 2 pi.

course_headin
g_mode

byte 1 Enum
erated

is a mutually exclusive set of values that defines the
method of control of an air vehicle along a path
(whether in a pre-planned or override mode).
CONFIGURATION = 0,
MANUAL_OVERRIDE = 1,
MANUAL_OVERRIDE_UNTIL_POINT = 2

flap_angle float 4 rad specifies the angle between the chord of the flap and
the chord of the aircraft's wing. The measurement is
stated in radians between -pi and pi.

flight_mode byte 1 Enum
erated

mutually exclusive set of values that defines the air
vehicle flight modes for use in modelling air vehicle
performance in conjunction with Flight Performance
Models.
AERM = 0,
AUTOLAND_ENGAGE = 1,
AUTOLAND_WAVE_OFF = 2,
AUTOPILOT_GENERAL = 3,
AUTOPILOT_NAVAID_SLAVED = 4,
AUTOPILOT_TERRAIN_AVOIDANCE = 5,
BRANCH = 6,
CONTIGENCY = 7,
FLIGHT_DIRECTOR = 8,
GOTO_IAF = 9,
GROUND_CONTROLLED_STEARING = 10,
JUMP_TO_WAYPOINT = 11,
LAUNCH = 12,
LOITER = 13,
LOITER_NOW = 14,
NO_MODE = 15,
ON_ROUTE_LOITER = 16,
RTB = 17,
SLAVE_TO_SENSOR = 18,
WAYPPOINT = 19

g_load_capaci
ty

float 4 rad specifies the magnitude of the rate of change of an
object's velocity

heading float 4 rad represents a projection of the longitudinal axis of the
platform onto the horizontal plane, relative to true
north. The measurement is stated in radians between
-pi and pi

launch_option byte 1 Enum
erated

mutually exclusive set of values that defines the action
to be done as part of the vehicle launch operation.
LAUNCH_ABORT = 0,
LAUNCH_START = 1,
TAXI_ABORT = 2,
TAXI_START = 3

location_error string
?

50? ? specified the variance is the location attribute of the
aerial vehicle

magnetic_vari
ation

float 4 rad Magnetic variation in rad

mass float 4 kg Mass is defined as Inertial mass which has been
shown to be equivalent to active gravitational mass or
passive gravitational mass.

maximum_air_
speed

float 4 m/s specifies the maximum not to exceed dash speed for
AerialVehicleType.

optimum_cruis float 4 m/s specifies the optimum cruising speed for

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 38 of 73

e_airspeed AerialVehicleType

optimum_end
urance_airspe
ed

float 4 m/s specifies the airspeed for minimum fuel flow (minimum
power) for AerialVehicleType

radar_signatur
e

string 50? None element that is defined as the radar signature of an
object. It can be a UAV, Tank or any other such item

recovery_optio
n

byte 1 Enum
erated

describes submodes for the recovery phase of flight.
RECOVERY_ABORT = 0,
RECOVERY_RETURN_TO_BASE = 1,
RECOVERY_START = 2

sideslip_angle float 4 rad specifies the angle between the actual direction of
travel and the heading for AerialVehicleType. It is the
direct result of movement in which a relative flow of air
moves along the lateral axis, resulting in a sideways
movement from a projected flight path, especially a
downward slip toward the inside of a banked turn

speed float 4 m/s specifies the magnitude of the velocity (i.e. speed)

speed_brake_
angle

float 4 rad specifies the angle of the movable speed brake air foil
for AerialVehicleType

speed_mode byte 1 Enum
erated

speedMode is an AirVehicleModePreferenceType
which specifies the enumeration value of speed mode
for AerialVehicleType
INDICATED_AIRSPEED = 0,
CALIBRATED_AIRSPEED = 1,
TRUE_AIRSPEED = 2,
GROUND_SPEED = 3,
MACH = 4

identification_
number

string 16 None null terminated string with the tail number designated
by the owning country’s certifying agency

turn_rate float 4 rad/s specifies the angular rate of change of heading for
AerialVehicleType. Angular rate change of the
projection of the longitudinal axis onto the horizontal
plane, and that projection's bearing relative to true
North.

velocity Veloci
tyTyp
e

12 - specifies the rate of change in position in terms of
ground speed components for AerialVehicleType

Table 37 – AccelerationType structure

Field Type Length Units Description

roll_rate float 4 rad/s angular rotation rate of the vehicle about the longitudinal axis,
+ is clockwise looking from the rear of the UA towards the front

pitch_rat
e

float 4 rad/s angular rotation rate of the vehicle longitudinal axis (tail to
nose) relative to the local horizontal, + is u

turn_rat
e

float 4 rad/s angular rate change of the projection of the longitudinal axis
onto the horizontal plane, and that projection's bearing relative
to true North

Table 38 – AttitudeType structure

Field Type Lengt
h

Units Description

roll float 4 rad rotation of the vehicle about the longitudinal axis relative to the
local horizontal plane, + is clockwise looking from the rear of
the UA towards the front.

pitch float 4 rad angle of the vehicle longitudinal axis (tail to nose) relative to
the local horizontal, + is up.

yaw float 4 rad heading projection of the longitudinal axis onto the horizontal

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 39 of 73

plane, and that projection's bearing relative to true North.

Table 39 – VelocityType structure

Field Type Length Units Description

u_speed float 4 m/s speed component along true north vector in m/s

v_speed float 4 m/s speed component along true east vector in m/s.

w_speed float 4 m/s inertial vertical speed component pointing down in m/s.

Alternative data models for specific sub-concepts included in the aforementioned
descriptions, could be the following:

 The EnduranceType data model from UCS3.4 for providing relevant fuel information,

 The BatteryType UCS3.4 data model for providing relevant battery information, and

 The DataLinkStatusType UCS3.4 data model for providing relevant communications

information.

Table 40 – EnduranceType structure

Field Type Length Units Description

duration double 8 s Estimated remaining time of operation with current
fuel/charge/power.

footprint Enduran
ceFootp
rintType

73 - Indicates endurance in terms of maximum
ground/surface distance that can be reached given the
current System state.

fuel float 4 kg Measure of fuel in kg.

percent float 4 % Percent of fuel/charge/power remaining as compared
to total capacity.

Table 41 – EnduranceFootprintType structure

Field Type Length Units Description

altitude float 4 m Indicates the Height Above Ellipsoid (HAE)
reference for the footprint.

boundary EnduranceFootpr
intBoundaryType

61 - Indicates the boundary of the endurance
footprint.

duration double 8 s Indicates estimated remaining time of
operation with current fuel/charge/power plus
the estimated time remaining until the
endurance footprint shrinks to its smallest size.

Table 42 – EnduranceFootprintBoundaryType structure

Field Type Length Units Description

ellipse Positioned
EllipseType

36 - Indicates the footprint boundary as a ground/surface
ellipse, any part of which can be reached given the
remaining endurance.

polygo
n

PolygonTy
pe

25 - Indicates the footprint boundary as a ground/surface
polygon, any part of which can be reached given the
remaining endurance.

Table 43 – PositionedEllipseType structure

Field Type Length Units Description

center
_point

Position2D
TimeType

24 - centerPoint specifies the center of the ellipse at a
location on the surface of the Earth at a given point in
time.

major
_axis

float 4 m majorAxis specifies the length of the longest diameter
of the ellipse.

minor float 4 m minorAxis specifies the length of the shortest diameter

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 40 of 73

_axis of the ellipse.

orient
ation_
of_ma
jor_axi
s

float 4 rad orientationOfMajorAxis specifies the true north bearing
of the major axis of the ellipse. The measurement is
stated in radians between 0 and 2 pi.

Table 44 – BatteryType structure

Field Type Length Units Description

connected_
power_bus

Power
BusTyp
e

8 - connectedPowerBus is a PowerBusType which
defines the set of Power Buses to which this
BatteryType is connected. The multiplicity indicates
the number of currently connected PowerBusTypes.

energy_avai
lable

float 4 J energyAvailable is an EnergyCapabilityType which
defines the available energy from the BatteryType.

energy_usa
ge_rate

float 4 W energyUsageRate is a PowerCapabilityType which
describes the rate of energy being used by the
BatteryType.

temperature float 4 temperature is a TemperatureCapabilityType which
describes the temperature of the BatteryType.

Table 45 – PowerBusType structure

Field Type Length Units Description

curre
nt

float 4 A current is a CurrentCapabilityType which describes the amount
of electrical current flowing on the PowerBusType.

voltag
e

float 4 V voltage is a VoltageCapabilityType which describes the amount
of electrical potential energy available on the PowerBusType.

Table 46 – DataLinkConnectionType structure

Field Type Length Units Description

comm_
addres
s

string 50? None commAddress is a DescriptionType that specifies the
recipient node address for the DataLinkConnectionType.

comm_
protoco
l

string 50? None commProtocol is a DescriptionType that specifies the
protocol used for the DataLinkConnectionType. Comm
protocols include RS232 or FireWire for serial connections
and TCP/IPV4 for IP. Additionally the protocol could be a
composite to add an application layer such as FTP over
TCP/IP.

comm_
rate

float 4 Mbit/s commRate is a CommsRateType that specifies the
communication rate, usually baud or bps, for the
DataLinkConnectionType.

comm_
type

string 50? None commType is a DescriptionType that specifies the
communication stack general type such as serial, IP, ATM,
etc. for the DataLinkConnectionType. This field determines
the available options for the commProtocol attribute.

data_e
ncrypti
on

string 50? None dataEncryption is a DescriptionType that describes the
encryption method used during COMM for the
DataLinkConnectionType.

data_fo
rmat

string 50? None dataFormat is a DescriptionType that describes the format of
the data being transferred across the data link for the
DataLinkConnectionType.

3.4.10 UnderwaterVehicleType

The UnderwaterVehicle structure is a complete description of the system in terms of
parameters such as position, orientation and velocities at a particular moment in time. The
system position is given by a North-East-Down (NED) local tangent plane displacement (x, y,

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 41 of 73

z) relative to an absolute WGS-84 coordinate (latitude, longitude, height above ellipsoid). The
symbols for position and attitude as well as linear and angular velocities were chosen
according to SNAME's notation (1950). The body-fixed reference frame and Euler angles are
depicted. The frequency of sending the message is one message per second while the
vehicle is on the surface. During the time that the vehicle is submerged, no data is sent,
when returning to the surface the data is sent again with the current position.

Table 47 – UnderwaterVehicleType structure

Field Type Length Units Description

name_vehicle String None Name of vehicle

id_vehicle int 4 None Id of vehicle

lat Float 8 rad WGS-84 Latitude

lon Float 8 rad WGS-84 Longitude

height Float 8 rad Height above the WGS-84 ellipsoid

x Float 4 m The North offset of the North/East/Down field with
respect to LLH.

y Float 4 m The East offset of the North/East/Down field with
respect to LLH.

Z Float 4 m The Down offset of the North/East/Down field with
respect to LLH.

phi Float 4 rad The phi Euler angle from the vehicle's attitude

theta Float 4 rad The theta Euler angle from the vehicle's attitude.

psi Float 4 rad The psi Euler angle from the vehicle's attitude.

u Float 4 m/s Body-fixed frame xx axis velocity component

v Float 4 m/s Body-fixed frame yy axis velocity component.

w Float 4 m/s Body-fixed frame zz axis velocity component.

depth Float 4 m Depth, in meters. To be used by underwater vehicles.
Negative values denote invalid estimates.

alt Float 4 m Altitude, in meters. Negative values denote invalid
estimates.

3.4.11 GroundVehicleType

The GroundVehicleType structure may define details about vehicles operating on the ground
(GroundVehicle type). It constitutes a proposed extension of UCS3.4, as the latter is only
UAV-oriented. The aforementioned structure incorporates details about the id, type, status
(available/not-available, idle, deployed, etc.) and navigation mode, accompanied with
telemetry data. More details are given in the following table.

Table 48 – GroundVehicleType structure

Field Type Length Units Description

vehicle_id int 4 None vehicle identification

identificati
on_tag

string 50 None null terminated string with the
tail number designated by the
owning country’s certifying
agency

telemetry Teleme
tryData

136 None specifies the current telemetry of the GroundVehicle

navigation
_mode

byte 1 None a mutually exclusive set of values that defines the
current navigation mode of the ground vehicle.
MANUAL = 0,
REMOTE = 1,
AUTONOMOUS = 2

status Vehicle
Status

? None type that describes current status of the asset, with
generic and shared attributes with other Vehicle assets

radar_sign string 50 None element that is defined as the

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 42 of 73

ature radar signature of an object. It
can be a UAV, Tank or any other
such item

3.4.12 WeatherData/EnvironmentalConditions

Weather information is crucial for the launch and recovery of UxV, and it must be provided by
the ARESIBO system. Additionally, the UAVs can also provide local and real-time weather
data to the ARESIBO system. An environmental related data model has been created as
new, with the aim of providing the simulation entities with Meteorological and Oceanographic
(METOC) data. This data can be used as an input to models from across the ARESIBO
system. The model contains information obtained from publicly available sources about the
air, water surface, water column, land and sea floor environments. The environment is
divided into five gridded zones: the Air Column, the Water Surface, the Water Column, the
Seabed and the Land. Each zone is broken into a series of ‘data cubes’ that contain all of the
relevant environmental attributes. These cubes are referenced by row, column and, in the
case of the air and water zones, by layer values.

Table 49 – VS_Environment structure

Field Type Length Units Description

num_rows Unsigned32 4 - number of rows of the grid

num_colum
ns

Unsigned32 4 - number of columns of the grid

NW_corner
_latitude

Float64 8 rad latitude of the Noth-West corner of the
environmental grid

NW_corner
_longitude

Float64 8 rad longitude of the Noth-West corner of the
environmental grid

SE_corner
_latitude

Float64 8 rad latitude of the South-East corner of the
environmental grid

SE_corner
_longitude

Float64 8 rad longitude of the South-East corner of the
environmental grid

Table 50 – AirColumn structure

Field Type Length Units Description

grid VS_Environm
ent

4 - environmental grid

number_o
f_layer

Integer32 4 - number of layer of the cube

lower_lay
er

Float64 8 m height above mean sea level of the lowest layer
of the cube

higher_lay
er

Float64Array 8 m lowest above mean sea level of the lowest
layer of the cube

sun_azim
uth

Float64Array Variable
lengthArray

rad

sun_eleva
tion

Float64Array Variable
lengthArray

rad

fog_cloud
_density

Float64Array Variable
lengthArray

%

wind_gust
_direction

Float64Array Variable
lengthArray

rad

wind_gust
_duration

Float64Array Variable
lengthArray

s

wind_gust
_intensity

Float64Array Variable
lengthArray

m/s

rainfall_rat
e

Float64Array Variable
lengthArray

mm/h

relative_h Float64Array Variable %

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 43 of 73

umidity lengthArray

snowfall_r
ate

Float64Array Variable
lengthArray

mm/h

solar_radi
ation

Float64Array Variable
lengthArray

w/m2

sustained
_wind_dir

Float64Array Variable
lengthArray

rad

sustained
_wind_sp
eed

Float64Array Variable
lengthArray

m/s

temperatu
re

Float64Array Variable
lengthArray

C

wind_she
ar

Float64Array Variable
lengthArray

m/s

pressure Float64Array Variable
lengthArray

hPa

Table 51 – Bathymetry structure

Field Type Length Units Description

grid VS_Environment 4 - environmental grid

depth_values Float64Array Variable
lengthArray

m depth of the seabed wrt the water surface

Table 52 – Land structure

Field Type Length Units Description

grid VS_Enviro
nment

4 - Environmental grid

land_region
_Id

Float32 Variable
lengthArray

enum

terrain_type Float64 Variable
lengthArray

enum

snow_accu
mulation

Float64Arr
ay

Variable
lengthArray

mm

ice_accreati
on

Float64Arr
ay

Variable
lengthArray

mm

Table 53 – WaterColumn structure

Field Type Length Units Description

grid VS_Environment 4 - Environmental grid

number_of_l
ayer

Integer32 4 - Number of layer of the cube

shallower_la
yer

Integer32 4 -

deeper_laye
r

Integer32 4 -

water_curre
nt_intensity

Float64Array Variable
lengthArray

m/s

water_curre
nt_direction

Float64Array Variable
lengthArray

rad

salinity Float64Array Variable
lengthArray

ppm

temperature Float64Array Variable
lengthArray

C

transparenc
y

Float64Array Variable
lengthArray

%

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 44 of 73

Table 54 – SeaBed structure

Field Type Length Units Description

grid VS_Environment 4 - Environmental grid

breaking_w
ave_zone

Float32Array 4 - Number of layer of the cube

wave_frequ
ency

Float32Array Variable
lengthArray

Hz

wave_height Float32Array Variable
lengthArray

m

wave_directi
on

Float32Array Variable
lengthArray

rad

Table 55 – WeatherStateType structure

Field Type Length Units Description

weather WeatherType - Current or forecasted weather for a defined area and
period of time.

Table 56 – WeatherType structure

Field Type Length Units Description

barometric_p
ressure

PressureTyp
e

 weather is a WeatherType that describes
observed weather in a defined weather area for
the WeatherObservationType.

cloud_cover CloudCover
StateType

 cloudCover is a CloudCoverStateType that
defines the cloud cover for the WeatherType. The
description of cloud cover includes the type of
cloud cover e.g. clear, scattered, etc. and also
the cloud ceiling and floor.

forecast_mod
el

DescriptionT
ype

 forecastModel is a DescriptionType that defines
the Meteorological Model used to derive weather
information for the WeatherType.

humidity HumidityTyp
e

 humidity is a HumidityType that defines the
relative humidity for a defined area for the
WeatherType.

icing_severity WeatherSev
erityType

 icingSeverity is a WeatherSeverityType that
describes the extent of icing for the
WeatherType. Icing severity includes none, light,
moderate, severe, extreme, etc.

precipitation Precipitation
StateType

 precipitation is a PrecipitationStateType that
defines the precipitation state for the
WeatherType. The precipitation state includes
the type, amplification and probability of
precipitation.

remarks DescriptionT
ype

 remarks is a DescriptionType that describes
additional comments and details about the
weather for the WeatherType. These remarks
could be generated by the operator or the alert
system.

temperature Temperatur
eType

 temperature is a TemperatureType that specifies
the air temperature for the WeatherType.

thunderstorm
_potential

SizeType thunderstormPotential is a SizeType that defines
the probability that there is a thunderstorm in a
defined area for the WeatherType.

turbulence_s
everity

WeatherSev
erityType

 turbulenceSeverity is a WeatherSeverityType that
defines the severity of air turbulence for the
WeatherType. The turbulence severity can be
characterized as none, light, moderate, severe,
extreme, etc.

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 45 of 73

visibility DistanceTyp
e

 visibility is a DistanceType that defines the
distance at which an object or light can be clearly
discerned for the WeatherType.

weather_effe
cts

WeatherEffe
ctsType

 weatherEffects is a WeatherEffectsType that
describes the effects of weather on the
surrounding environment (road state, sea state,
terrain state, etc.) for the WeatherType.

wind_velocity VelocityTyp
e

 windVelocity is a VelocityType that defines the
wind velocity for a defined area for the
WeatherType.

3.4.13 Sensor

This type of messages will be utilized for sensor reporting. Similar to the EOIRStatusRptType
structure of the UCS 3.4, these structures will be used to track the current status of the
sensors and retrieve useful information.

Table 57 – EOIRStatusRptType structure

Field Type Length Units Description

vehicle_id int 4 None Vehicle identification

payload_id int 4 None Payload identification

built_in_test
_status

byte 1 Enumerated The status of the Built-In Test for the EO/IR
sensor.
BIT_FAILED = 0,
BIT_PASSED = 1,
BIT_SUSPENDED = 2,
OFF_ABORT = 3,
RUNNING_BIT = 4

field_of_vie
w_azimuth

float 4 rad The current azimuth/yaw component of the
sensor's field of view.

field_of_vie
w_elevation

float 4 rad The current elevation/pitch component of the
sensor's field of view

focus_auto
mation

byte 1 Enumerated The current focus adjustment mode of
operation for the EO/IR payload sensor.
AUTOMATIC = 0,
MANUAL = 1,
SEMI_AUTOMATIC = 2

image_cente
r_location

Positio
n3DTy
pe

20 None The current coordinates for the center of the
entity at which

image_outp
ut_state

byte 1 Enumerated The current output channels of an imaging
sensor system.
NONE = 0,
EO = 1,
IR = 2,
BOTH = 3,
PAYLOAD_SPECIFIC = 4

pointing_mo
de

byte 1 Enumerated The current pointing mode for the EO/IR
sensor.
NIL = 0, ANGLE_RELATIVE_TO_UA = 1,
SLEWING_RATE_RELATIVE_TO_UA = 2,
SLEWING_RATE_RELATIVE_TO_INERTIAL
= 3,
LAT_LONG_SLAVED = 4,
TARGET_SLAVED = 5,
STOW = 6,
LINE_SEARCH_START_LOCATION = 7,

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 46 of 73

LINE_SEARCH_END_LOCATION = 8

pointing_ori
entation

Orienta
tion3D
Type

12 - The current pointing direction (roll, pitch and
yaw) for the sensor, relative to the airframe.

power_statu
s

byte 1 Enumerated The current power status (on, off, standby,
etc.) of the EO/IR sensor.
POWER_OFF = 0,
POWER_ON = 1,
EMERGENCY_POWER = 2,
POWER_STANDBY = 3

Table 58 – PayloadSteeringReportType structure

Field Type Length Units Description

vehicle_id int 4 None Vehicle identification

payload_id int 4 None Payload identification

field_of_view
_azimuth

float 4 rad The current azimuth/yaw component of
the sensor's field of view.

field_of_view
_elevation

float 4 rad The current elevation/pitch component of
the sensor's field of view

image_center
_location

Position3DType 20 None The current coordinates for the center of
the entity at which

pedestal_poi
nting_orienta
tion

Orientation3DTy
pe

20 None The current point direction (roll, pitch and
yaw) for the pedestal, relative to the
airframe

pedestal_poi
nting_orienta
tion_velocity

OrientationVeloc
ity3DType

20 None The current rate of change for each axis
of the pedestal orientation

pointing_mo
de

byte 1 Enumer
ated

The current pointing mode for the EO/IR
sensor.
NIL = 0, ANGLE_RELATIVE_TO_UA = 1,
SLEWING_RATE_RELATIVE_TO_UA =
2,
SLEWING_RATE_RELATIVE_TO_INER
TIAL = 3,
LAT_LONG_SLAVED = 4,
TARGET_SLAVED = 5,
STOW = 6,
LINE_SEARCH_START_LOCATION = 7,
LINE_SEARCH_END_LOCATION = 8

zoom_directi
on

byte 1 Enumar
etd

The current zoom direction (in, out, none)
for the imaging sensor.
NO_ZOOM = 0,
ZOOM_IN = 1,
ZOOM_OUT = 2

3.4.14 XR (AR/MR/VR) device

This field describes the data that interacts with the XR devices. The input from the system to
the devices may include external data (sensor data etc.), textual information, images, audios
and videos. While the output from devices to the system may include strings, images, audios
and videos.

Table 59 – ContentPlaceHolder structure

Field Type Length Units Description

id String 20 Content placeholder id

position String 24 Content placeholder position

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 47 of 73

rotation String 24 Content placeholder rotation

Table 60 – UserProfile structure

Field Type Length Units Description

id String 20 User id

role String 20 User role

Table 61 – DeviceProfile structure

Field Type Length Units Description

id Long 20

change_date String Device information changed date

changed_by String 40 Device information changed User

client_id String 64 The device id

client_name String 64 The device name

create_date String The device enrolment date

current_user
_id

Long 20 The user id

device_type String 200 The type of device

ip_address String 32 Device IP address

status String 24 Device status
(connected/disconnected)

wifi String 40 Device wifi status

recent_user_i
d

Long 20 The user id of last login

current_build
_id

String 64 The device build information

bluetooth_ma
c

String 40 The device Bluetooth MAC

device_categ
ory

String 140

os String 200 The device OS

serial_numbe
r

String 200 Serial number of the device

wifi_mac String 40 The device WiFi MAC

domain_id Long 20

sdk int 11

3.4.15 VideoDetection

The Visual detection component is responsible for providing a set of bounding boxes of the
targets detected in video streams. The structure will include the confidence scores for each
object that exists inside the image frame and its bounding box (i.e., where this object is
located inside the image). As visual detection details are not part of the UCS model; thus,
they can be considered as an extension field.
More specifically, at the top level of the data structure, some generic fields are suggested to
be included related to the input data fed to the visual detection component. The indicated
fields are the source URL, the sender id for the identification of the asset that provides the
visual information and the geolocation of the asset, the pixel size of the frame, and the
timestamp when the detection occurred. A set of targets will be also listed based on the
number of targets detected within the frame. The information per target will be the following:
the type of the detected object (car, person, boat, etc.), an id for the identification of the
object per frame, the confidence score of the detection, the bounding box of the detection in
pixel coordinates and a path to a local server where the frame of the detection is stored.

Table 62 – VideoDetection structure

Field Type Length Units Description

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 48 of 73

timestamp long None The timestamp of the detection in Zulu time format

sender_id int 4 None Vehicle identification

source string 50 None RTMP or RTSP url

width int 4 None Frame width in pixels size

height int 4 None Frame height in pixels size
latitude double 4 None Latitude of the vehicle (if provided)
longitude double 4 None Longitude of the vehicle (if provided)
target_class string 10 None Class type of the detected object

target_object_id int 4 None Unique object id per detection

target_confidence float 4 None The confidence score of the detection

target_im_analysed string 50 None Path on a local server with a snapshot of the 1
st

frame of the detection

bbox_top int 4 None This is the smallest pixel value of the box along
the x axis

bbox_left int 4 None This is the smallest pixel value of the box along
the y axis

bbox_width int 4 None The width of the box in pixels along the x-axis

bbox_height int 4 None The height of the box in pixels along the y-axis

3.4.16 AlertType

According to the ARESIBO GA, there are different components that target to provide alerts
(messages) to the end users, within the operation of the ARESIBO system. The exact
location, the type, a short description and various other fields are included in the data
structure of this type of messages. For example, the sensor fusion engine as well as the
semantic representation and reasoning module will provide real-time alerts regarding a
specific detection (based on sensor measurements) or a current severe condition for which
information should be disseminated directly to the interested parties. As an additional
example, the risk analysis module will communicate risk predictions to the end users,
regarding the progress of a monitored situation, recommendations to mitigate a risk, etc. The
concept of alerts is part of the extended version of the UCS3.4 (named AlertType). However,
within the context of the ARESIBO the structure will be extended with one additional field,
named ‘category’, which will represent the origin of the alert (incident/sensor fusion/risk).

Table 63 – AlertType structure

Field Type Length Units Description

alert_id int 4 None alert identification

vehicle_id int 4 None vehicle identification

subsystem_id byte 1 Enumerated identifier associated with the subsystem for
which status information is being reported.
ENGINE = 0,
MECHANICAL = 1,
ELECTRICAL = 2,
COMMS = 3,
PROPULSION_ENERGY = 4,
NAVIGATION = 5,
PAYLOAD = 6,
RECOVERY_SYSTEM = 7,
ENVIRONMENTAL_CONTROL_SYSTEM = 8,
VSM_STATUS = 9,
VDT = 10,
CDT = 11,
RESERVED_1 = 12,
RESERVED_2 = 13,
RESERVED_3 = 14,
RESERVED_4 = 15,
RESERVED_5 = 16,

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 49 of 73

RESERVED_6 = 17,
RESERVED_7 = 18,
RESERVED_8 = 19,
VSM_SPECIFIC_1 = 20,
VSM_SPECIFIC_2 = 21,
VSM_SPECIFIC_3 = 22,
VSM_SPECIFIC_4 = 23,
VSM_SPECIFIC_5 = 24,
VSM_SPECIFIC_6 = 25,
VSM_SPECIFIC_7 = 26,
VSM_SPECIFIC_8 = 27,
VSM_SPECIFIC_9 = 28,
VSM_SPECIFIC_10 = 29,
VSM_SPECIFIC_11 = 30,
VSM_SPECIFIC_12 = 31

alert byte 1 Enumerated alert is an AlertKindType which specifies the
enumeration value for the type of non-normal
subsystem condition for AlertType.
ACKNOWLEDGEABLE = 0,
ACKNOWLEDGEABLE_CLEARABLE = 1,
CLEAR = 3,
CLEARABLE = 4,
FIXED_TIME = 5,
NOT_CLEARABLE = 6

alert_end_tim
e

double 8 s alertEndTime is a TimeType which specifies the
date and time value relative to the end of the
alert for the subsystem alert for AlertType.

alert_group byte 1 Enumerated alertGroup is an AlertGroupType which specifies
the enumeration value of the group category for
the subsystem alert for AlertType
AIR_COLLISION = 0,
AV_PLATFORM = 1,
ENGINEERING = 2,
HAZARDOUS_AREA = 3,
MAINTENANCE = 4,
PAYLOAD = 5,
RESTRICTED_AREAD = 6,
SYSTEM = 7

alert_level byte 1 Enumerated alertLevel is an AlertLevelType which specifies
the enumeration value indicating the alert level
for the subsystem for AlertType.
ADVISORY = 0,
CAUTION = 1,
CLEARED = 2,
WARNING = 3

alert_notificati
on

byte 1 Enumerated alertNotification is a NotificationType which
specifies the enumeration value indicating the
reason for receiving the alert for AlertType. The
notification will be in response to a specific
request or as a result of subscription.
SPECIAL_REQUEST = 0,
SUBSCRIBED_TO_REQUEST = 1

alert_priority UInt32 4 None alertPriority is an OrderType which specifies the
priority level of the AlertType

alert_start_tim
e

double 8 s alertStartTime is a TimeType which specifies the
date and time value relative to the start of the
alert for the subsystem alert for AlertType

alert_status byte 1 Enumerated alertStatus is an AlertStatusType which specifies

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 50 of 73

the enumeration value indicating the status of
posted alert information for the subsystem for
AlertType.
ALERT_ACTIVE = 0,
ALERT_ACTIVE_ACKNOWLEDGED = 1

alert_text string 80 None alertText is a DescriptionType which specifies
the text for describing the alert for AlertType

latitude double 4 None latitude of the alert

longitude double 4 None longitude of the alert

altitude float 4 m altitude of the alert

category byte 1 Enumerated category is used to indicate the source module
that the alert was created from.
INCIDENT = 0 (incident detection)
SFE = 1 (sensor fusion engine)
RISK = 2 (risk analysis module)

3.4.17 Position/Geospatial data

In need to describe the location (geographical position) of an entity/resource (asset, human,
etc.) or an incident (detection, activity, condition, etc.) we utilise from the UCS3.4 the relevant
data structures, i.e. the Position2DType and the Position3DType, as described below.

Table 64 – Position2DType structure

Field Type Length Units Description

latitude double 8 rad Latitude value describing the current position of the involved
entity in WGS84 coordinates format

longitude double 8 rad Longitude value describing the current position of the
involved entity in WGS84 coordinates format

Table 65 – Position3DType structure

Field Type Length Units Description

height float 4 m

position Position2DType 16 -

3.4.18 Decision Support/Action

Information handled by the Decision Support (DS) module will be based, amongst the other,
on existing standard formats used to share data in the emergency/security/safety fields.
These standard formats, whose carried information will be consumed and visualized within
the interconnected command and control systems, include:

 Common Alerting Protocol (CAP) (Oasis 2010)

 Emergency Data Exchange Language-Resource Messaging (EDXL-RM) (Oasis

2008)

The OASIS CAP4 protocol is an XML data format for exchanging both events' related
information and alerts over all kinds of media. It contains an alert block with generic
event/alert information, multiple info blocks with multilingual information to describe events or
alerts details, multiple resource blocks for attaching multimedia content and, in general,
additional resources and multiple area blocks to define geographic features, such as events'
location or the area which a given alert refers to.
Building on the XML schema prescribed by the CAP specifications, ARESIBO will define
personalized profiles for the exchanged CAP messages, according to the specific
communication contexts and needs.

4
 http://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-os.pdf

http://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-os.pdf
http://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-os.pdf

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 51 of 73

A CAP Profile is a customization of the base Common
Alerting Protocol, which will be used in the project to
provide the ability to collect and relay information for
the foreseen types of events and alerts from/to a
variety of interconnected systems.
The definition of a CAP Profile for use in all countries
involved in the pilots represent an improvement over
the current situation, since it will allow the creation of
messages according to specific needs of all services
involved in border security operations. Figure 7 shows
the elements of the CAP structure. Information
targeted to specific applications' needs according to
the ARESIBO CAP profile, will be carried through
custom, pre-defined alert.info.parameter fields.
The EDXL-RM5 protocol defines an XML schema to
facilitate sharing of information on resources. It
provides several data structures and a complete
mechanism to request, offer and describe employed
resources, specifically to realize the following actions
on resources:

 RequestResource

 ResponseToRequestResource

 CommitResource

 RequestInformation

 ResponseToRequestInformation

 OfferUnsolicitedResource

 ReleaseResource

 RequestResourceDeploymentStatus

 ReportResourceDeploymentStatus

 RequestExtendedDeploymentDuration

 ResponseToRequestExtendedDeploymentDuration

Figure 8: EDXL-RM messaging reference model.

5
 http://docs.oasis-open.org/emergency/edxl-rm/v1.0/EDXL-RM-SPEC-V1.0.pdf

Figure 7. CAP message structure

http://docs.oasis-open.org/emergency/edxl-rm/v1.0/EDXL-RM-SPEC-V1.0.pdf
http://docs.oasis-open.org/emergency/edxl-rm/v1.0/EDXL-RM-SPEC-V1.0.pdf

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 52 of 73

Table 66 shows a basic event/alert information structure, from the mapping between the
most relevant information needed for describing alerts and events, and some of the fields
foreseen by the CAP standard:

Table 66 – BasicEventAlertInformation structure

Field Type Length Units Description

msg_id String Unique CAP message identifier

msg_timestamp String Date/time when the message is created

msg_sender String Message sender

msg_status Message status (e.g. Actual)

evt_category String Event/Alert category (e.g. Security, Safety)

msg_type String Message type (e.g. Alert, Update)

evt_type String Event/Alert type

evt_desc String Event/Alert description

evt_location String
WGS84

 Event location or Alerting area (textual description).
Event location or Alerting area (WGS84 coordinates
of points or polygons)

evt_severity String Event/Alert severity (e.g. Severe, Extreme,
Moderate)

evt_urgency String Event/Alert urgency (e.g. Immediate, Expected)

evt_certainty String Event/Alert certainty (e.g. Observed, Likely)

msg_recipients String List of intended recipients

evt_resources String Additional resources associated with the Event/Alert
(e.g. external links, media)

Table 67 shows a basic structure for a ResourceDeployStatus message, from the mapping
between the most relevant information needed for describing resources deploy status, and
some of the fields foreseen by the corresponding EDXL-RM message:

Table 67 – ReportResourceDeployStatus structure

Field Type Length Units Description

msg_id String Unique message identifier

msg_timestamp String Date/time when the message is created

msg_content_type String Message content type
(ReportResourceDeployStatus in the
considered case)

msg_sender String Message sender

res_id String Resource identifier in the system

res_name String Resource description (text)

res_type String Resource type (e.g. border patrol)

res_owner String Resource owner contact info

res_deploy_status String Resource deployment status (e.g. In
transit)

res_availability String

res_quantity String Measurable quantity of resources of the
given type

res_schedule_info String Schedule type information (e.g. departure,
arrival)

res_schedule_time String Schedule time (e.g. actual foreseen
departure or arrival time)

res_schedule_location String Resource schedule location (e.g.
Russia/Finland customs clearance)

3.4.19 VoiceStream

The voice streams between the on-field units and the C2 centre will be exchanged using the
IP protocol. Therefore, the digital information is packetized and encapsulated into IP packets

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 53 of 73

and sent through a VPN tunnel established between the communication hub and the C2
centre.

Table 68 – IPPacketVoice structure

Field Type Length Units Description

IP header 20-60 Bytes The IPv4 header is variable in size due to the optional
14th field (options)

IP payload 0-
65,535

Bytes The IPv4 payload is variable. It is notable due to the MTU
of the network being 1500 Bytes, any packet larger than
that value will be fragmented into packets smaller than
1500 Bytes.

3.4.20 VideoStream

The real time video streams will be encapsulated into IP packets and sent through a VPN
tunnel established between the communication hub and the C2 centre. All the packets
maintain their format which the communication network doesn’t modify.

Table 69 – IPPacketVideo structure

Field Type Length Units Description

IP header 20-60 Bytes The IPv4 header is variable in size due to the optional
14th field (options)

IP payload 0-
65,535

Bytes The IPv4 payload is variable. It is notable due to the MTU
of the network being 1500 Bytes, any packet larger than
that value will be fragmented into packets smaller than
1500 Bytes.

4 Definition of the ARESIBO Knowledge Base (KB)

The following section presents the first iteration of the ARESIBO ontology, also referred as
“the ARESIBO Knowledge Base (KB)”. The ARESIBO KB will serve as a knowledge
representation model for semantically representing notions pertinent to incidents, resources
and tasks that are reported and handled within the context of the ARESIBO system. More
specifically, the KB will receive input from the different multimodal sensors “attached” to the
operational assets, in order to process heterogeneous data and detection results from lower
levels of implementation, with a target aim to describe semantically the defined
events/incidents. Coupling the “sensed” data for the available resources and tasks with
contextual information will increase the situational awareness of the operator/end-user of the
system. The different ARESIBO components that are linked to the reporting, analysis and
transmission of data from sensors interact with the KB via the Knowledge Base Service
(KBS). The latter can be conceived as the interface to the ontology, which semantically
integrates the different sourced data into the ontology. It also receives output from the
semantic reasoning process (inference) running on top of the KB and forwards the inferred,
high-level knowledge back to other interested system modules, like for example to the
ARESIBO Decision Support or to the Dashboard. The interaction between the KB and the
KBS is established with the use of proper ontology-based queries (SPARQL/SPIN), which
can insert/delete/fetch relevant data from the components to the KB and vice versa. The
communication between the KB, the KBS and the different components and sensors is
depicted in Figure 9.
In the following subsections we specify details about the technologies utilised (Section 4.1),
the ontology engineering process (Section 4.2). In addition, the requirements of the
ARESIBO KB (Section 4.3.1) are specified while an extensive overview of the existing
ontologies is provided and describe different parts of the context of our domain of interest
(Section 4.3.2). The analysis is continued with details about the implementation (Section
4.3.3) and conceptualisation (Section 4.3.4) of the ARESIBO KB, and we evaluate its key

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 54 of 73

metrics (Section 4.3.5). Finally, we frame the first iteration of the ontology reasoning
processes, by demonstrating specific use cases (Section 4.4).

Figure 9: Interaction of KB, KBS and the different ARESIBO component and sensors

4.1 Ontologies and Semantic Web
The Semantic Web is "a web of data that can be processed directly and indirectly by
machines" (Berners-Lee et al., 2001). It is an extension of the World Wide Web (WWW), in
which web resources are augmented with semantics describing their intended meaning in a
formal, machine-understandable way. The term was coined by Tim Berners-Lee, the inventor
of WWW and director of the World Wide Web Consortium (W3C), which oversees the
development of proposed Semantic Web standards. The standards proposed by W3C
promote common data formats and exchange protocols on the Web. The Semantic Web is
thus regarded as an integrator across different content, information applications, and
systems. Ontologies play a key role in the Semantic Web, providing the machine-
interpretable semantic vocabulary and serving as the knowledge representation and
exchange vehicle. The Web Ontology Language (OWL) has emerged as the official W3C
recommendation for creating and sharing ontologies on the Web (Bechhofer, 2009).

4.2 Ontology Engineering Process
There are several ontology engineering methodologies existing in literature, describing the
different approaches in the design and implementation of ontological frameworks. In Table
70, we summarize the thorough comparison conducted for the most established
methodologies, including Sensus (Swartout et al., 1997), KACTUS (Bernaras et al., 1996),
DOGMA (Jarrar and Meersman, 2008), METHONTOLOGY (Fernandez et al., 1997),
DILIGENT (Pinto et al., 2004), On-To-Knowledge (Sure et al., 2004), Cyc (Lenat and Guha,
1989), Unified (Uschold, 1995), Grüninger and Fox (Grüninger and Fox, 1994), and Neon
(Suárez-Figueroa et al., 2009). The aforementioned methods are compared on the basis of a
specific set of characteristics:

 Well-documented – this term shows the depth and details provided for each process

and guideline of the methodology,

 Reusability – this characteristic shows whether the reuse/reengineering of existing

ontologies is supported by the methodology,

 Dynamic/Adaptive – this value defines the level of adaptability to various stages of

development,

 Structured representation – this parameter shows if the methodology incorporates

a structured description of the ontology requirements.

Table 70 – Comparison of Ontology Engineering Methods

Methodology Well- Reusability Dynamic/ Structured representation

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 55 of 73

documented Adaptive

Sensus Medium Yes Low No

KACTUS Low Yes Low No

DOGMA High No Low Tuples
6

METHONTOLOGY Medium Yes Low No

DILIGENT Medium No Low No

On-To-Knowledge High No Low No

Cyc Medium Yes Low No

Unified Low No Low No

Grüninger and Fox High No Medium CQs
7

NeOn High Yes High ORSD
8

While all examined methodologies presented interesting perspectives towards building
ontologies, either from scratch or by additionally inheriting existing ones, the NeOn
methodology outstands all others since it adequately covers all the aforementioned aspects
in the most efficient way. The NeOn methodology is a scenario-based process which guides
the ontology engineer to define efficiently the requirements and characteristics of the
ontology, it considers the existence of multiple ontologies in ontology networks, and thus it
supports the reuse/reengineering of knowledge resources. It consists of the following
components:

 The NeOn Glossary - a well-established glossary that includes 59 predefined

processes and activities. Its purpose is to provide a standard vocabulary, created by

ontology experts that can be used for well-described and structured processes.

 Scenarios for building ontologies and ontology networks - unlike other

methodologies, NeOn approaches a variety of scenarios for ontology engineering,

while each scenario is decomposed into different processes or activities.

 Two ontology network life cycle models - these models, named the Waterfall

Model and the Iterative/Incremental Model indicate how to establish the development

processes and activities.

 A set of methodological guidelines for processes and activities - These are

specific guidelines in order to fulfil the activities and processes mentioned in the

NeOn Glossary.

In the current task, we adopt the NeOn methodology for specifying the requirements of the
ARESIBO ontology, the details of which is presented in the following subsection.

4.3 The ARESIBO Ontology

4.3.1 Specification of Ontology Requirements

The key aim of the ARESIBO ontology is to semantically represent all notions that are
pertinent to the project, serving as the model for semantically integrating information coming
from the various sensors and analysis components of the system. In a sense, we are
primarily interested in processing the heterogeneous content and detection results sourced
from lower levels of implementation to higher levels of interpretation, by semantically

6
 In DOGMA framework, a tuple is a description of conceptual relations in the form <γ: Term1, Role,

InvRole, Term2>, where Term1 and Term2 are linguistic terms, γ is a context identifier, and
Role/InvRole are lexicalisations of the paired roles in any binary relationship; for each pair (γ, Term) is
assumed to refer to a uniquely identifiable concept (Jarrar and Meersman, 2008).
7
 Competency questions (CQs) constitute an indicative (non-exhaustive) list of questions that the

ontology should be competent to answer (Grüninger and Fox, 1995)
8
 The Ontology Requirements Specification Document (ORSD) is a structured document that captures

the aims and scope, the main uses, the targeted end-users, as well as the functional and non-
functional requirements of the ontology to be implemented.

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 56 of 73

describing the required events/incidents and by facilitating the information/assessment of
hazardous situations. By enriching data for the available resources and tasks, with contextual
information, we target to increase the situational awareness of the operator for the current
condition of the system and potentially augment their navigation and communication
capabilities. In other words, the ARESIBO ontology will serve as the bridge between visually
identified concepts (detections) and communicated content (alerts) to the end user.
Driven by the aforementioned objectives, we describe the process of designing and
implementing the first iteration of the ARESIBO ontology. Starting from its purpose and
scope, the ARESIBO ontology aims at fulfilling the needs for:
(i) Data integration at semantic level. The ARESIBO semantic model will be built as a

network of interconnected ontologies that will act as the “glue” in order to link

heterogeneous concepts and individual component-level data models. The core ontology

will be the common representation framework of the project for the semantic modelling

and integration of information stemming from several modules, sensors and other

external resources (e.g., legacy systems, C2) that will be linked to ARESIBO system. If

needed, a set of domain specific ontologies will be linked to the core ontology to

specialise concepts and terminology whenever this is needed. For instance, the CIRAM

ontology9 will extend the core ARESIBO ontology to represent risk concepts that will

describe detected/predicted risks and potential threats in border surveillance operations.

(ii) System intelligence. A set of reasoning tasks will be supported over the knowledge base

that will be built in order to facilitate a wide range of decision-making processes and

system functionalities. The ARESIBO KB will be capable of integrating, combining and,

finally, inferring new knowledge based on existing data that has been fed to the system.

In particular, ontological models will be interconnected with a querying and a reasoning

module (e.g., a SPARQL endpoint for semantic queries and a DL-reasoner, respectively).

Models and reasoning rules will be expressed in different Semantic Web languages, such

as RDF(S), OWL(2), SWRL, SPARQL and SPIN to balance between the expressiveness

of the knowledge representation methodologies and the performance (i.e., tractability) of

query answering tasks (e.g., instance checking, classification, consistency checking).

Within the project, the ARESIBO KB will be fed by other modules (e.g., visual recognition,
sensor fusion, risk analysis) and will perform semantic reasoning to deduce new knowledge.
In this context, information such as real-time alerts, detections or even predictions will be
combined in order the system to infer new incidents (e.g. border crossing) or to extract
hidden knowledge from a sequence of incidents (e.g., speedboat approaching the shore). A
set of semantic reasoning scenarios that the ARESIBO ontology can address related to the
considered PUCs of the project is included in the following table.

Table 71 – Potential semantic reasoning scenarios based on the project’s PUCs.

Semantic reasoning scenario Relevant PUCs

Infer land border trespassing based on trespasser’s location. PUC1: Land border
Tresspassing

Automated human detection based on visual recognition. PUC1: Land border
Tresspassing

Estimate target’s speed and moving direction. PUC2: Smuggling of
goods

Infer target’s location based on sensors measurements. PUC3: Human
Trafficking

Keep track of the drifting location of Floating Unwanted Packages (FUPs). PUC4: Drug
Trafficking

Assess whether a target is a threat or not: this will depend on detected All PUCs

9
 This work belongs to T4.6 and will be delivered in D4.6.

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 57 of 73

objects and activities (e.g. firearms, potentially illegal activities like smuggling
etc.).

Assess the severity of a risk; CIRAM defines specific levels of risk severity. All PUCs

4.3.2 Reuse of Existing Resources

Ontology reuse is the process of adopting and efficiently integrating available ontological
schemas when developing a new ontology. It is generally considered as a key factor in
developing cost-effective, high-quality and interoperable ontologies, since (a) it avoids “re-
inventing the wheel”, i.e., rebuilding existing ontologies and resources from scratch, and (b) it
takes advantage of already formalised ways of representing specific entities in domains of
interest. Such domains can be either (a) general (upper level ontologies), regarding
abstract/common concepts, or (b) domain specific, involving more concrete
conceptualisations of the abstract notions that apply to specific use cases and fields of
interest. Since the project’s domain can be substantially wide, and the user requirements
specification is still an ongoing process, we had to focus on the most relevant (at that point)
domains of interest, on the basis of the existing requirements, and the available use cases
(PUCs) described in the GA of the project. As a result, we have discriminated in the following
subsections a list of ontologies that can potentially be adopted as concepts in the ARESIBO
ontology and be aligned (extended) within its scope. A structured representation of the
relations between the ARESIBO KB and the existing knowledge is depicted in Figure 10.

Figure 10: Structuring the process of adopting domain ontologies (blue ellipse) and upper level
ontologies (grey ellipse) within the context of the ARESIBO ontology

4.3.2.1 IoT and Sensors

There has been great effort in representing sensors and their observations, properties and
features of interest. Towards this objective, the most well-known are the Semantic Sensor
Network (SSN) (Compton et al., 2012) and Sensor, Observation, Sample, Actuator (SOSA)
(Janowicz et al. 2019) ontologies, which in general they describe the notions of sensors, their
observed properties, the involved procedures and actuators. They have been applied in
various use cases and applications including satellite imagery, large-scale scientific
monitoring, industrial and household infrastructures, social sensing, citizen science,
observation-driven ontology engineering, and the Web of Things.
Additionally, sensors are essential for the intelligence, surveillance, and reconnaissance
(ISR) domain, wherein tools and ontologies have been developed to support decision-making
and improve mission planning. As for example, a sensor knowledge repository, namely
OntoSensor (Russomanno et al., 2005), which establishes a widely accepted terminology of
sensors, their properties, capabilities, and services. In addition, a similar framework is the

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 58 of 73

Missions & Means Framework (MMF) (Gomez et al., 2008) and the corresponding ontology
which expresses MMF’s complete Level and Operator set from both mission Synthesis and
Employment perspectives (Figure 11: The MMF Ontology.).

Figure 11: The MMF Ontology.

4.3.2.2 Time/Events

In most real-world applications, temporal information is vital and having knowledge of the
temporal relationships between various transactions, events and orders is often critical. Such
requirements are addressed by the development of the OWL-Time Ontology (Hobbs et al.,
2006), (Pan et al., 2005). OWL-Time can describe the temporal properties of any real-world
denoted resource and provides various and flexible representations that assist with queries
and reasoning applications. It has a very expressive vocabulary for the ontology’s core
principles including interval, durations, and time positions and can represent temporal
aggregates.
The Event Ontology (Liu et al., 2010) is cantered around the notion as an instance that
occurs in a certain time, environment, including some participants and presenting some
action features. An event may have a location, time, active agents, factors, products or relate
with other events as seen in Figure 12: Core event model.

Figure 12: Core event model

Another ontology describing events and situations is ESO (Segers et al., 2015): The Event
and Implied Situation Ontology, which formalizes the pre-, during-, and post-situations
of events and the roles of the entities affected by an event. A situation is calculated as some
abstract state where some properties and values hold. If an event occurs in the world, some

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 59 of 73

of these values will be modified. Overall, ESO ontology describes many relevant concepts
and classes like Removing, Destroying, and Escaping.

4.3.2.3 Geospatial data

In the last years, a significant part of the research community focused on the production of
geospatial data, their semantics and their use in Geographic Information Systems (GIS) as
they offer powerful retrieval methods that enable users to execute complex queries. There
are several ontologies and vocabularies that have been designed to express semantically the
main notions of spatial data. The foremost of such ontologies are the GeoSPARQL 1.0
(Perry et al., 2012), an Open Geospatial Consortium Standard that defines an RDF/OWL
vocabulary for representing spatial information and the query language for the RDF data.
GeoSPARQL also includes a variety of powerful rules and functions that allows precise
searching for relevant spatial information about the objects of interest (locations in geo-
coordinates, functions for calculating distances between areas, etc.).
Complementarily, the NeoGeo Geometry Ontology10 and NeoGeo Spatial Ontology11 have
also been proposed which comprise vocabularies for describing geographical regions in RDF
and describe topological relations between features, respectively. In addition, WGS84 Geo
Positioning (Brickley 2004) comprises a vocabulary for representing latitude, longitude and
altitude information in the World Geodetic System geodetic reference datum. Additionally,
relevant ontologies can be utilized like the Frame, Pixel, Place, Event (FraPPE) vocabulary,
which enables Visual Analytics operations on geo-spatial time varying data and eases the
correlation operations on geo-spatial data from different sources evolving over time.

4.3.2.4 Surveillance/Safety

Exchanging data and information is crucial in any integrated surveillance system rendering it
faster, cheaper and more efficient. Towards this objective, the CISE data model (Berger et
al., 2017), a common information-sharing environment, has been developed and
implemented into the EUCISE-OWL ontology (Riga et al., 2019). The EUCISE-OWL ontology
is a serialisation of the EUCISE2020 Data Model as an OWL ontology, conducted within the
context of the ROBORDER EU-funded research project. They consider the corresponding
data standards and identify the most useful aspects for maritime monitoring authorities
representing all relevant sectors at EU and national level in a neutral, flexible, extensible and
understandable way. The EUCISE-OWL ontology comprises of hundreds of classes and
properties and can be integrated in a decision support or information system for supporting
knowledge representation, event triggering, action inference, and information dissemination
to the authorities. An excerpt of the concepts defined as classes is presented in Figure 13.

Figure 13: Core classes and main interrelationships of the EUCISE-OWL ontology.

10

 http://geovocab.org/geometry
11

 http://geovocab.org/spatial

http://geovocab.org/geometry
http://geovocab.org/spatial

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 60 of 73

The aforementioned ontology can be extended by including the concepts and descriptions in
the Vehicle Sales Ontology (VSO12). VSO is a vocabulary for describing various types of land
and maritime vehicles and could be used in the system to describe the operational assets.
Moreover, the BeAware ontology (Baumgaftner et al., 2010) comprises another relevant
example of useful KB. BeAware Ontology represents semantically all aspects pertinent to
crisis management, some of which include emergencies, sensor data analysis, incidents and
impacts. It introduces the concept of spatio-temporal primitive relations between observed
real-world objects improving the situation awareness of the system operators.

4.3.2.5 Alerts

Numerous relevant works have also been proposed towards identifying ontology-based
policies and alerts. Alerts can be mapped into attack contexts identifying the relevant policies
and reacting accordingly to the corresponding threats. Well known ontology-based policy
frameworks are Rei (Tonti et al., 2003) and KAos (Uszok et al., 2003). KAos domain/policy
services and tools allow for the specification, management, conflict resolution and
enforcement of policies within the specific contexts. Rei relies on an application-independent
ontology to represent the concepts of rights, prohibitions, obligations, dispensations, policy
rules as well as actions.
The notifications and the alerts that these policies produce are of paramount importance
when an emergency is about to occur while it is critical for emergency systems to broadcast
the relevant messages to all recipients. A well-known ontology that addresses the
information needs for sharing and integrating emergency notification messages is the Simple
Emergency Alerts 4 [for] All (SEMA4A) (Malizia et al., 2017) ontology. SEMA4A aims at
establishing a deep correlation among available information about the user, the context of
use and the situation and is composed by four elements as seen in Figure 14.

Figure 14: The SEMA4A architecture.

4.3.3 Ontology formalisation and implementation

The ARESIBO ontology is expressed in OWL 2 (W3C, 2012), a knowledge representation
language widely used within the Semantic Web community for developing ontologies. Thus,
we capitalise on its wide adoption as well as its formal structure and syntax, based on
Description Logics (DL), a family of knowledge representation formalisms characterised by
logically grounded semantics and well-defined reasoning services.
OWL 2 ontologies can be used along with information written in RDF, and themselves are
primarily exchanged as RDF documents. Data is structured in RDF triples, which are

12

 https://www.w3.org/2001/sw/wiki/VSO

https://www.w3.org/2001/sw/wiki/VSO

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 61 of 73

statements in the form <subject predicate object>. Each entity within a triple is

associated with a Uniform Resource Identifier (URI), usually in the form of an http address,
which is a unique identification that serves the principles of the Semantic Web. URIs involve
two main parts: (a) the base URI (the leftmost) part of the URI which is common across
multiple entities in a specific ontology; a short form (prefix) can be specified to represent the
commonly used part of the URI; and (b) the URI fragment part which is the part of the URI
after a delimiter (usually #); this part denotes a recognisable name for the described entity
which should follow the basic rules and guidelines for naming and labelling ontologies (Noy
and McGuinness, 2001).
The main building blocks of ontologies are concepts (or else classes) representing sets of
objects (e.g., Person), roles (or else properties) representing relationships between objects

(e.g., worksIn), and individuals (or else instances) representing specific objects (e.g., Alice,

as an instance of Person class). Properties are further classified as: (a) object properties,

which describe how classes and their individuals can be related to each other; (b) data
properties, which attribute data values to individuals, either using default data types (e.g.
string, integer, boolean, etc.) or within pre-defined data range expressions; and (c)
annotation properties, which give additional description to the domain being modelled,
without having any effect on the logical aspects of the ontology.
For developing and deploying the ontology that is described in the following subsection, we
relied on the following tools:

 TopBraid Composer13 Free Edition, which is a visual modelling environment for creating

and managing domain models. Its graphical user interface (GUI) enables the fast design

and development of ontologies,

 SPARQL (Harris & Seaborne, 2013) and SPIN (Knublauch et al., 2011), which serve as

the semantic query language for submitting (insert/delete/update/fetch) queries to the

ontology and running rules on top of the model,

 GraphDB14, which is a popular graph database for locally hosting test versions of the

ontology and serving queries as a SPARQL endpoint,

 yEd Graph Editor15 and Graffoo16 – yEd is a general-purpose diagramming program

that can be used to draw many different types of diagrams via an intuitive user interface.

Graffoo is a graphical framework for ontologies that can be loaded as a separate section

in the yEd palette (Falco et al., 2014). We use both technologies to visualise information

modelled in the ARESIBO ontology with a well-established, recognisable and easily

interpretable way.

4.3.4 Ontology conceptualisation and mapping

In the current section, we describe in detail the conceptualisation of the first version (v1) of
the ARESIBO ontology. In this first iteration, specific third-party vocabularies were adopted,
which are indicated, in text and in figures that follow, with the use of their relevant prefixes in
front of the class names (Table 72). For simplicity, those classes and properties, which have
no prefix defined in descriptions and visualisations that follow, belong to the core ARESIBO
ontology.

Table 72 – A list of utilised prefixes and their relevant ontologies

Prefix Ontology Namespace URI

aresibo ARESIBO http://160.40.51.22/mklab_ontologies/ARESIBO/aresibo#

eucise EUCISE-OWL http://160.40.51.22/mklab_ontologies/ROBORDER/eucise#

13

 https://www.topquadrant.com/products/topbraid-composer/
14

 https://www.ontotext.com/products/graphdb/
15

 https://www.yworks.com/products/yed
16

 http://www.essepuntato.it/graffoo

https://www.topquadrant.com/products/topbraid-composer/
https://www.ontotext.com/products/graphdb/
https://www.yworks.com/products/yed
http://www.essepuntato.it/graffoo

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 62 of 73

foaf Friend-Of a-Friend http://xmlns.com/foaf/0.1

geo GeoSPARQL http://www.opengis.net/ont/geosparql#

owl OWL http://www.w3.org/2002/07/owl#

rdfs RDF Schema http://www.w3.org/2000/01/rdf-schema#

sosa Sensor, Observation,
Sample, Actuator

http://www.w3.org/ns/sosa

xsd XML Schema Definition
Language (XSD)

17

http://www.w3.org/2001/XMLSchema#

Thus, the core classes specified in the first version of the ARESIBO semantic model are
described in detail below, while their between hierarchy is visualised in Erreur ! Source du
renvoi introuvable.:

Alert: This class represents the alert messages that

the ARESIBO KB will produce when specific conditions
are met, increasing the situational awareness of the
end-user. The class Alert is further divided into 4

subcategories (Advisory, Caution, Cleared and

WarningAlert) as those where defined through the

Alert data model (Section 3.4.16). An instance of Alert

type can be asserted with an ID (alertID property), a

level (alertLevel property) and a short description

(alertDescription property). Also, an instance of alert

can be associated with an instance of type Detection

via the producedByDetection property (inverse of

producesAlert property).

Context: This class represents either the spatial

(SpatialContext) or the temporal context

(TemporalContext) of an entity, meaning details about

its location and time reference correspondingly. In the
ARESIBO ontology, we have further specialised the
class SpatialContext into more concrete definitions for
covering different spatial relations among the involved
entities. More details are given in subsection 4.3.4.2.
Dataset: This class represents the dataset produced

by an analysis/monitoring ARESIBO component. In
practice, it involves the fields (as defined in
corresponding data models) and the actual values
reported/produced by the different components of the
ARESIBO system.
DetectedEntity: Any entity that is detected and

reported by the ARESIBO components, can be an

instance of DetectedEntity type.

Detection: This class represents all detections

defined in a dataset. An instance of Detection class is

asserted with one or more instances of
DetectedEntity class via the property detects. Detected entities can be also of Incident,

or of Agent, or of Object type.

Incident: This class represents an event taking place during a surveillance operation.

Incidents can be further specialised into different types, which are enumerated in the
ontology via the adopted EUCISE-OWL ontology.

17

 https://www.w3.org/TR/xmlschema11-1/

Figure 15: The hierarchy of the
core classes of the ARESIBO

ontology (v1)

https://www.w3.org/TR/xmlschema11-1/

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 63 of 73

Location: This class represents a location (point or area), indicated by latitude, longitude,

and radius. Any entity that is related to a location is of SpatialEntity type as well.

Resource: Within the ARESIBO context, we describe as resources the different operational

forces, which can be either instances of OperationalAsset type (i.e., the different UxVs,

drones, etc.), instances of Agent type (Person, group of Person, etc.), or instances of

Object type (other type of vehicles, etc.)

Risk: This class is used to represent a more or less probable situation involving exposure

to danger, or to a not desirable condition, that is affected by a, existing incident is the
surveillance area. More details will be defined, within the ARESIBO Risk Model that will be
implemented within T4.6 of the project.
Sensor: This class represents any instrument that observes a property or phenomenon with

the goal of producing an estimate of the value of a parameter.
SpatialEntity: This class represents any entity that has a spatial reference defined either

via the Location or via the SpatialContext type.

Task: This class represents a mission assigned to an operational asset (person, object)

when an incident occurs.
A detailed representation of the associations defined between the core classes of the
ARESIBO ontology is given in Figure 16. For the shake of brevity, we have omitted data
type properties, as well as extensive class hierarchies. Generally, in illustrations that follow,
based on the Grafoo notation, the yellow rectangles indicate the different classes, while the
green rectangles denote data properties (i.e., properties that take a raw data value, like e.g.
integers and strings).

Figure 16: High-level overview of the core classes of the ARESIBO ontology v1

As previously mentioned, we have adopted and extended different concepts from other
ontologies, and especially from EUCISE-OWL; the latter is the most relevant to our domain
of interest, enabling information sharing among involved parties under surveillance issues,
even though it is targeted for the maritime domain. We have collected in Table 73 the
concepts that could be considered as similar, in terms of semantics, relations and the context
where they are defined. The so-called ontology mapping enables the establishment of

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 64 of 73

semantic interoperability between new and existing sources, by defining the direct linking of
classes/properties with third party ontologies and standards.

Table 73 – Mapping the core ARESIBO ontology concepts with third-party ones

ARESIBO
Ontology Concept

Relation Third-party Ontology Concept

Analysis <Not defined yet> -

Agent owl:equivalentClass
rdfs:subClassOf

eucise:Agent
foaf:Person

Alert <Not defined yet> -

Context <Not defined yet> -

Dataset rdfs:subClassOf eucise:Document

Detection rdfs:subClassOf eucise:Event

Incident rdfs:subClassOf eucise:Event

Location owl:equivalentClass eucise:Location

Object rdfs:subClassOf eucise:Object

OperationalAsset owl:equivalentClass eucise:OperationalAsset

Risk <Not defined yet> -

Sensor rdfs:subClassOf sosa:Sensor

SpatialEntity owl:equivalentClass
rdfs:subClassOf

geo:SpatialObject
geo:Feature

Task rdfs:subClassOf eucise:Action

4.3.4.1 Representing Analysed Data and Detections-ok

As already mentioned, the ARESIBO ontology encompasses information relevant to the
analysis of input data coming from the various sensors of the framework. This information is
fed to the ontology from the analysis components; the core constructs in the ontology are
illustrated in Figure 17.

Figure 17: Representation of the analysed data in the ARESIBO ontology

More specifically, any data or analysis reported by a sensor or a component operating within
the ARESIBO system, can be represented in the ontology as an instance of Dataset class.

The latter is an extension of eucise:Document and inherits all its relevant declarations. Also,

a dataset can be associated with a unique URI via the hasSource property. The dataset is

asserted to an instance of type Detection through the use of the involvesDetection

property. In the example, we assume that the detected entity is an instance of Incident type

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 65 of 73

(subclass of eucise:Event), but it could be also an instance of Agent or of Object type, in

general. The occurrence of a specific incidence or the detection of specific spatial objects
can raise an Alert, which is associated with the detected entity via the property

producesAlert.

4.3.4.2 Representing Spatial Relations

Most of the requirements defined in Section 4.3.1 on the basis of the ARESIBO PUCs,
describe use cases that are relevant to trespassing an area, border crossing, and thus
involve the notion of Location. In order to handle such issues within the ontology, we need to
include concepts and properties that will enable the definition of the spatial relation between
the examined parameters. Thus, within the ARESIBO KB, we define the class
SpatialContext as the concept that may describe the spatial relation between two or more

involved instances of SpatialEntity type (i.e., entities that may have a spatial

representation/reference asserted to them). The class SpatialContext is further discretised

in different types of spatial relations, like for example the
AbsoluteDistanceSpatialContext, which defines the absolute distance between two (or

more) entities of interest (Figure 18).

Figure 18: Representation of the spatial relations between spatial entities in the ARESIBO
ontology

These definitions may form the basis for creating a proper semantic reasoning framework
(Section 4.4), by implementing relevant SPARQL rules that will enable for example the
constant monitoring of the distance between two involved entities and the raise of a proper
alert to the end user (C2, operator) when the current distance is less than a specific
threshold. The GeoSPARQL ontology that we adopt, implements important query functions
that support the definition of different spatial relations, such as the Egenhofer (Egenhofer,
1989) and the RCC8 (Cohn, 1997) relation family (Table 74), as well as of the Euclidean
distance (geof:distance18) between two geometries. By adopting these functions, we

achieve to enrich the operational capabilities of the ARESIBO KB, in terms of defining spatial
relations between the involved entities and resources, without any additional effort in
expressing the actual calculations of the given spatial relations.

Table 74 – SPARQL query functions adopted from GeoSPARQL

Relation
family

GeoSPARQL function Comment

E g
e

n
h o
f

e
r geof:ehEquals two geometries are topologically equal if their interiors

intersect and no part of the interior or boundary of one

18

 geof: is the prefix of GeoSPARQL Functions

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 66 of 73

geometry intersects the exterior of the other

geof:ehDisjoint x and y have no point in common

geof:ehMeet x and y have at least one point in common, but their
interiors do not intersect

geof:ehOverlap x and y have some but not all points in common, they have
the same dimension, and the intersection of the interiors of
the two geometries has the same dimension as the
geometries themselves

geof:ehCovers when x covers y means that every point of y is a point of
(the interior or boundary of) x

geof:ehCoveredBy every point of x is a point of (the interior or boundary of) y
(extends Inside relation)

geof:ehInside x lies in the interior of y

geof:ehContains when x contains y means that geometry y lies in x, and the
interiors intersect

R
C

C
8

geof:rcc8eq x is identical with y

geof:rcc8dc x is disconnected from y

geof:rcc8ec x is externally connected to y

geof:rcc8po x partially overlaps y

geof:rcc8tpp x is a tangential proper part of y

geof:rcc8tppi x is a tangential proper part inverse of y

geof:rcc8ntpp x is a nontangential proper part of y

geof:rcc8ntppi x is a nontangential proper part inverse of y

For utilising the GeoSPARQL functions in practice, we define the involved instances of
SpatialEntity class as instances of geo:Feature type as well (relation denoted in Figure

18). This mapping ensures that the ontology remains consistent, on the basis of the
GeoSPARQL definitions that are adopted, and also that the instance of SpatialEntity may

inherit all the relevant properties asserted to the geo:Feature, such as the

geo:hasGeometry that connects a spatial object with a specific geometry representing a

point or an area (polygon), and the geo:asWKT that connects the geometry with specific

latitude and longitude values. A detailed instantiation of spatial entities and relations is given
in Figure 19; this example involves the representation of a detected person and its distance
from a restricted area. With pink circles we present the instantiations (individuals/instances)
of the different classes; the labels that are attached to them are written in the form of
“instance_label::classType(s)”, where “::” is used as a delimiter between the name of the
instance (instance_label) and the type of the class/-es19 that it belongs.

Figure 19: Representation of a detected person close to a restricted location, on the basis of
the ARESIBO ontology.

19

 If more than one classes are defined, then these are divided with the use of comma (,), moving from
the more general (e.g., geo:Geometry) to the more specific (e.g., sf:Polygon) class.

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 67 of 73

4.3.5 Ontology Evaluation

The evaluation of ontologies is an emerging field of research in the Ontological Engineering
community that deals with the problem of assessing a given ontology from the point of view
of a particular criterion of application. Existing ontology evaluation methods generally
propose automated or semi-automated approaches that focus in specific qualitative (number
of classes, properties, axioms, etc.) or quantitative criteria (consistency, completeness,
expandability, sensitiveness, etc.) used to assess the examined ontology. An integrated
review of ontology evaluation methods is attributed in (Gangemi et al., 2005; Brank et al.,
2005). Such techniques will help uncover errors in implementation, and inefficiencies
regarding the modelling, the complexity and size of the ontologies. Nevertheless, no
evaluation method (either as stand-alone or in combination) can guarantee a good ontology;
on the contrary, it can definitely recognize problematic parts of it in terms of structure and
consistency (Vrandečić, 2009).

For the current task, we have performed different types of ontology evaluations, with regards
to its consistency, quality and structure. The results follow in subsections below.

4.3.5.1 Evaluating the consistency and quality

For evaluating the overall consistency and quality of the ontology we used OOPS (OntOlogy
Pitfall Scanner), an online tool for detecting the most common pitfalls20 in ontologies
(Poveda-Villalón et al., 2014). After analysing the ontology, OOPS provides a list with all the
pitfalls it detected along with the associated negative consequences and suggests
modifications in order to improve the quality of the ontology. The tool can detect:

 Critical pitfalls affecting the ontology’s consistency, which are crucial to be corrected,

 Important pitfalls, which are not equally critical, but are considered also important to be

corrected,

 Minor pitfalls, which do not cause any critical problems, but correcting them will improve

the quality of the ontology.

We submitted the current version (v1) of the ontology to OOPS and we have already
corrected all the detected pitfalls, which were critical but were made due to accidentally
wrong definitions in domain/range values of object properties. The current version of the
ontology has no more pitfalls, with the exception of some pitfalls concerning the imported
ontologies, which, as a consequence were left unresolved.

4.3.5.2 Evaluating the structure

For evaluating the structure, we relied on OntoMetrics21, an online framework that validates
ontologies based on established metrics. Table 75 presents the results derived from the
aforementioned analysis. Base Metrics comprise of simple metrics, like the count of classes,
axioms, objects etc.; these metrics show the quantity of ontology elements. Schema metrics,
on the other hand, address the design of the ontology; metrics in this category indicate the
richness, width, depth, and inheritance of an ontology schema design.

Table 75 – Ontology metrics of the implemented ARESIBO ontology (v1), as generated by
OntoMetrics tool

Base Metrics aresibo ontology
imported

ontologies
Total

Number of triples 297 13597 13849

Class count 28 256 284

Object property count 22 207 229

Data property count 14 172 186

20

 A catalogue of common pitfalls is given at http://oops.linkeddata.es/catalogue.jsp
21

 https://ontometrics.informatik.uni-rostock.de

http://oops.linkeddata.es/catalogue.jsp

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 68 of 73

Individual count 0 863 863

DL expressivity ALCHIF(D)

Schema Metrics Total

Attribute richness 0.285714

Inheritance richness 0.678571

Relationship richness 0.6

Axiom/class ratio 3.696429

Inverse relations ratio 0.409091

Class/relation ratio 0.589474

Starting with the base metrics, the total count of classes and properties of the ARESIBO
ontology indicates that it is a rather lightweight model, which could be easily adopted by
various applications, contrary to heavier “monolithic” ontologies that pose significant
challenges in integration. However, important additions should and will come up in the next
versions of the ontology, where the functional and non-functional requirements will be further
specialised according to the end-users and to the technical partners as well.
Regarding the schema metrics, the definitions that follow are adopted from (Gandemi et al.,
2005). Attribute richness is defined as the average number of attributes per class and can
indicate both the quality of ontology design and the amount of information pertaining to
instance data. The more attributes that are defined the more knowledge the ontology
conveys. Inheritance richness is defined as the average number of subclasses per class and
is a good indicator of how well knowledge is grouped into different categories and
subcategories in the ontology. This measure can distinguish a horizontal ontology (where
classes have a large number of direct subclasses) from a vertical ontology (where classes
have a small number of direct subclasses). The respective value in the table indicates that
the proposed ontology lies somewhere in between; this is reasonable, since the ontology
covers many aspects (breadth) while thoroughly modelling some of them (depth).
Relationship richness refers to the ratio of the number of non-inheritance relationships (i.e.
object properties, equivalent classes, disjoint classes) divided by the total number of
inheritance (i.e. subclass relations) and non-inheritance relationships defined in the ontology.
This metric reflects the diversity of the types of relations in the ontology. Finally, axiom/class
ratio, class/relation ratio, and inverse relations ratio describe the ratio between axioms-
classes, classes-relations, and inverse relations-relations, respectively, and are indications of
the ontology’s transparency and understandability.

4.4 Semantic Reasoning

An indicative interaction between the Visual Analysis tool, the KB and the Dashboard is
framed within Figure 20; the represented concept is based on a specific ARESIBO Project
Use-Case (PUC), which regards an incident of land-border trespassing.
The term "semantic reasoning" refers to the process of deriving facts that are not explicitly
expressed in an ontology. Consequently, a "semantic reasoner" (also often referred to as
"reasoning engine", "rules engine" or simply "reasoner") is a piece of software able to infer
logical consequences from a set of asserted facts or axioms in an ontology. A few examples
of tasks required from a semantic reasoner are as follows:

 Satisfiability of a concept, i.e., to determine whether a description of the concept is not

contradictory, namely, whether an individual can exist that would be an instance of the

concept,

 Sub Sumption of concepts, i.e., to determine whether concept C subsumes concept D,

namely, whether description of C is more general than the description of D,

 Check an individual, i.e., to check whether the individual is an instance of a concept,

 Retrieval of individuals, i.e., to find all individuals that are instances of a concept,

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 69 of 73

 Realization of an individual, i.e., to find all concepts which the individual belongs to,

especially the most specific ones.

Figure 20: The role of the ARESIBO KB, on the basis of PUCs

Within the project, the ARESIBO ontology will accept input from other modules analysing
sensor outputs and will perform semantic reasoning via SPARQL-based rules. Rule-based
reasoning satisfies the above points, plus additional aspects, like for example finding all
concepts that satisfy a defined rule, or creating new instances of all concepts that satisfy a
defined rule. A set of indicative semantic reasoning scenarios that the ontology will address
are outlined below – a more complete list of semantic reasoning scenarios will be determined
once the user requirements analysis is concluded.

 Determine position and proximity of objects of interest: e.g. where is my smartphone?

 Determine position and proximity of locations of interest: e.g. where is the exit?

 Determine position and proximity of persons of interest: e.g. where is my companion?

 Infer potential risks in user’s current situation: e.g. stairs ahead, vehicle approaching, etc.

 Infer types of activities performed by people in the vicinity of the user: e.g. two people in

front of each other means that they are probably discussing.

 Determine set of suggested actions in order to achieve something: e.g. get out of the

room or issue a ticket on the bus.

Regarding the implementation of the semantic reasoning module, the following parameters
are foreseen:

 Input: The semantic reasoning does not require any specific input, other than the

triggering of the reasoning execution.

 Output: The output from semantic reasoning is an ontology file including both the initially

asserted and the inferred information.

 Execution intervals: Every several minutes or on demand (e.g. whenever new knowledge

is inserted into the ontology).

 Involved technologies: The relevant RDF Service module will be based on Java/Python

2.x or 3.x, Apache Jena, SPARQL, SPARQLWrapper, RDFLib; a REST API will be

deployed with a configured public IP/port or domain name.

 Critical factors: A valid rule set for the reasoning process (see reasoning scenarios

above) is essential for the inference of meaningful knowledge. Hence, it is critical for all

involved domain experts (e.g. end user partners) to contribute actively to the task of

assembling this rule set.

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 70 of 73

5 Conclusions and future work

This deliverable presents the first iteration of (i) the ARESIBO Data Model, being a common
protocol for the communication between the ARESIBO components, and (ii) the ARESIBO
Knowledge Base, for facilitating the semantically-enriched representation of incidents,
resources and tasks that substantially exist/act/are detected within the operational field. The
proposed implementation of the ARESIBO Data Model and the semantic technologies
adopted for the ARESIBO Knowledge Base are uniform and modular and can be easily
enriched with additional concepts and schemas by extending the already existing definitions
of the model/schema correspondingly.
The already presented implementations, both in the ARESIBO Data Model and the KB, will
be refined once the end-user requirements analysis process (WP2) is concluded, which will
further specify the technical requirements and functional operations of the proposed system.
An additional point to consider in our future work revolves around the actual architecture of
the ARESIBO system, which may further specify the communication needs and message
details that should be exchanged within the ARESIBO system, and thus the overall data
model will be enhanced. These issues will be further explored in the coming months. Another
important utility that will be covered once the user requirements are finalised, is the creation
of a semantic reasoning framework, which will integrate a proper set of ontology-based rules
that will handle the process of inferring meaningful information to the end user. Within the
context of the aforementioned task, we will investigate the adoption of Semantic Complex
Event Processing techniques and Stream Reasoning techniques (Taylor and Leidinger,
2011) that may facilitate the management of heterogeneous data sourced from different
sensors simultaneously and support inferencing.

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 71 of 73

References

Baumgartner, Norbert, Wolfgang Gottesheim, Stefan Mitsch, Werner Retschitzegger and
Wieland Schwinger. “BeAware! - Situation awareness, the ontology-driven way.” Data
Knowl. Eng. 69 (2010): 1181-1193.

Bechhofer, S, “OWL: Web ontology language. , pp.,” in Encyclopaedia of Database Systems,
US, Springer , 2009, pp. 2008-2009.

Bernaras, A., Laresgoiti, I. and Corera, J. , “Building and reusing ontologies for electrical
network applications,” in Proceedings of the European Conf. on Artificial Intelligence
(ECAI’96), 1996.

Berger, D., Hermida, J., Oliveri, F. & Pace, G. “The Entity Service Model for CISE - Service
Model Specifications” Technical Report, Joint Research Centre of the European
Commission, 2017

Berners-Lee, T., Hendler, J., & Lassila, O, “The semantic web.,” Scientific American, vol.
284, no. 5, 2001.

Brank, J., Grobelnik, M. and Mladenić, D., “ A survey of ontology evaluation techniques,” in
Proceedings of the Conference on Data Mining and Data Warehouses (SiKDD 2005),
Ljubljana, Slovenia., 2005.

Brickley, D. "WGS84 geo positioning: an RDF vocabulary." Dostupné (2004).
Cohn, A.G., Bennett, B., Gooday, J. and Gotts, N.M., “Qualitative spatial representation and

reasoning with the region connection calculus,” GeoInformatica, vol. 1, no. 3, pp. 275-
316., 1997.

Compton, Michael, et al. "The SSN ontology of the W3C semantic sensor network incubator
group." Web semantics: science, services and agents on the World Wide Web 17 (2012):
25-32.

Egenhofer M.J., “ A formal definition of binary topological relationships,” in Foundations of
Data Organization and Algorithms. FODO 1989., Berlin, Heidelber., 1989.

Falco, R et al., “Modelling OWL ontologies with Graffoo.,” in European Semantic Web
Conference (pp. 320-325), Cham, 2014.

Fernandez, M et al, “METHONTOLOGY: From Ontological Art Towards Ontological
Engineering.,” in AAAI Technical Report SS-97-06, pp. 33-40., 1997.

Galluzzo, T. and Kent, D., “The OpenJAUS Approach to Designing and Implementing the
New SAE JAUS Standards,” OpenJAUS, 2011.

Gangemi, A. et al., “ A theoretical framework for ontology evaluation and validation.
Proceedings of the Semantic Web Applications and Perspectives (SWAP),,” in 2nd Italian
Semantic Web Workshop, Trento, Italy, 2005.

Gomez. Mario et al., “An Ontology-Centric Approach to Sensor-Mission Assignment,” in
International Conference on Knowledge Engineering and Knowledge Management, Berlin,
Heidelberg, 2008.

Grüninger, M. and Fox, M.S. , “The role of competency questions in enterprise engineering.,”
in Workshop on Benchmarking – Theory and Practice,pp. 22-31. Springer US., 1994 .

Harris, S., Seaborne, A. and Prud’hommeaux, E., SPARQL 1.1 query language, W3C
recommendation, 21(10), 2013.

Hobbs, Jerry R., and Feng Pan. "Time ontology in OWL." W3C working draft 27 (2006): 133.

Janowicz, Krzysztof, et al. "SOSA: A lightweight ontology for sensors, observations, samples,

and actuators." Journal of Web Semantics 56 (2019): 1-10.

Jarrar, M. and Meersman, R., “Ontology Engineering - The DOGMA Approach. Advances in
Web Semantics,” in LNCS Vol. 4891, pp. 7-34., 2008.

Kent, D., Galluzzo, T., Bosscher P. and Bowman, W., “Robotic Manipulation and Haptic
Feedback via High Speed Messaging with the Joint Architecture for Unmanned Systems
(JAUS),” OpenJAUS, 2014.

Knublauch, H., Hendler, J. A. and Idehen, K. , “SPIN - overview and motivation. W3C
Member Submission.,” 2011.

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 72 of 73

Lenat, D.B. and Guha, R.V. , “Building large knowledge-based systems; representation and
inference in the Cyc project. Addison-Wesley Longman Publishing Co., Inc.,” 1989.

Liu, Wei et al., “Extending OWL for Modeling Event-oriented Ontology,” in 2010 International
Conference on Complex, Intelligent and Software Intensive Systems, Krakow, Poland,
2010.

Malizia, A. et al., “SEMA4A: An ontology for emergency notification systems accessibility,”
Expert Systems with Applications, vol. 37, no. 4, pp. 3380-3391, 2017.

Marques, M.M., “STANAG 4586 –Standard Interfaces of UAV Control System (UCS) for
NATO UAV Interoperability,” 2012.

NATO Standardization Agency , “ STANAG 4609 JAIS (Edition 3) – NATO Digital Motion
Imagery Standard,” 2009.

NATO Standardization Agency, “STANAG 4586 (Edition 3) – Standard Interfaces of UAV
Control System (UCS) For NATO UAV Interoperability.,” 2012.

Noy, N.F. and McGuinness, D.L., “Ontology development 101: A guide to creating your first
ontology.,” 2001.

OASIS , “Emergency Data Exchange Language Resource Messaging (EDXL-RM) 1.0,”
2008.

OASIS, “Common Alerting Protocol Version 1.2,” 2010.
Pan, F. and Hobbs, J.R., “Temporal Aggregates in OWL-Time.,” in Proceedings of the

Eighteenth International Florida Artificial Intelligence Research Society Conference,
Clearwater Beach, Florida, USA, 2005.

Perry, Matthew, and John Herring. "OGC GeoSPARQL-A geographic query language for

RDF data." OGC implementation standard 40 (2012).

Pinto, H.S., Staab, S. and Tempich, C., “DILIGENT: Towards a fine-grained methodology for
DIstributed, Loosely-controlled and evolvInG Engineering of oNTologies.,” in Proceedings
of the 16th European Conf. on Artificial Intelligence (ECAI), pp. 393-397, 2004.

Poveda-Villalón, M., Gómez-Pérez, A., & Suárez-Figueroa, M. C. ., “(2014). Oops!(ontology
pitfall scanner!): An on-line tool for ontology evaluation.,” in International Journal on
Semantic Web and Information Systems (IJSWIS), 10(2), 7-34, 2014.

Riga, M., et al, “EUCISE-OWL: An Ontology-based Representation of the Common
Information Sharing Environment (CISE) for the Maritime Domain,” 2019.

ROBORDER Consortium, “Grant Agreement number 740593 ROBORDER,” European
Commission, 2017.

Russomanno, David J., Cartik R. Kothari, and Omoju A. Thomas. "Building a Sensor
Ontology: A Practical Approach Leveraging ISO and OGC Models." IC-AI. 2005.

Segers, R., Vossen, P., Rospocher, M., Serafini, L., Laparra, E., & Rigau, G. (2015). Eso: A
frame-based ontology for events and implied situations. Proceedings of MAPLEX, 2015.

Serrano, D. “Introduction to JAUS for Unmanned Systems Interoperability,” ” NATO Science
& Technology Organization, Cerdanyola del Vallès, Spain, 2015.

Suárez-Figueroa, M., Gómez-Pérez, A. and Villazón-Terrazas, B., “How to write and use the
Ontology Requirements Specification Document. On the move to meaningful internet
systems: OTM 2009. Part of the Lecture Notes in Computer Science book series,” 2009.

Sure, Y., Staab, S. and Studer, R., “On-To-Knowledge Methodology (OTKM).,” Handbook on
Ontologies, pp. 117-132, 2004.

Swartout, B., Ramesh, P., Knight, K. and Russ, T. , “Towards distributed use of large-scale
ontologies.,” in Symposium on Ontological Engineering of AAAI, pp. 138-148., 1997.

Taylor K., Leidinger L. , “Ontology-Driven Complex Event Processing in Heterogeneous
Sensor Networks. In: Antoniou G. et al. (eds) The Semanic Web: Research and
Applications.,” ESWC 2011 Lecture Notes in Computer Science, vol. 6644, 2011.

Tonti G., Bradshaw J.M., Jeffers R., Montanari R., Suri N., Uszok A., “Semantic Web
Languages for Policy Representation and Reasoning: A Comparison of KAoS, Rei, and
Ponder,” in The Semantic Web - ISWC 2003, Berlin, Heidelberg, 2003.

WP6 Implementation of
Recommendations

ARESIBO - GA 833805 Page 73 of 73

Uschold, M. and King, M., “Towards methodology for building ontologies.,” in Workshop on
Basic Ontological Issues in Knowledge Sharing, held in Conjunction with IJCAI-95. ,
Cambridge, UK., 1995.

Uszok, Andrzej et al., “KAoS policy and domain services: toward a description-logic
approach to policy representation, deconfliction, and enforcement,” in Policies for
Distributed Systems and Networks, Lake Como, Italy, 2003.

Vrandečić, D, “Ontology Evaluation, Handbook on Ontologies. International Handbooks on
Information Systems,” pp. 293-313, 2009.

W3C, “OWL 2 Web Ontology Language Document Overview” (Second Edition). W3C
Recommendation 11 December 2012, available online: http://www.w3.org/TR/owl2-
overview/

