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Acronym Meaning 

AP Average Precision 

CNN Convolutional Neural Network 

COCO Common Objects in COntext 

CPP Coverage Path Planning 

DARP Divide Areas algorithm for optimal multi-Robot coverage Path planning 

DoF Degrees of Freedom 

fps frames per second 

HITL Human In The Loop 

mAP mean Average Precision 

MST Minimum Spanning Tree 

NED North East Down coordinate system 

RC Resource Controller 

RCNN Region proposing Convolutional Neural Network 

ROI Region of Interest 

RPN Region Proposal Network 

RT-SAM Real-Time Situational Awareness Maximization 

SSD Single Shot Detector 

STC Spanning Tree Coverage 

UxV Any type of unmanned vehicle 

WGS84 World Geodetic System 84 coordinate system 

YOLO You Only Look Once 
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1 Executive summary 

This report presents the tools that are developed for the ARESIBO project in order to 
provide high-level guidance for the multiple vehicles participating in the missions and the 
methodologies used for the visual object detection. The tools for the multiple vehicles’ 
guidance are developed in the context of two different tasks. Specifically, for T3.3 - Collective 
intelligence for swarming robots and optimised human-robot collaboration, is developed the 
module Resource Controller, a module responsible to translate the high-level objectives 
defined for the missions into low-level commands and actions for all the involved assets and 
vehicles. This module takes over a double role, offering multiple path planning solutions for the 
vehicles, depending on the user-defined objectives, as well as acting as a coordinator for the 
missions, managing different aspects and issues during their execution. Additionally, for T3.6 
- Sensing optimisation that deals with the Dynamic Data Driven Assimilation (DDDAs) and the 
active sensing, is developed the Real-Time Situational Awareness Maximization (RT-SAM) 
module. RT-SAM is a tool for real-time, vision-based path planning, that continuously provides 
the best monitoring positions for a swarm of UxVs, with the objective of maximizing both the 
number and accuracy of the detected objects of interest in a region, ensuring simultaneously 
that each of the UxVs deals with unique information in the region of interest (ROI), by punishing 
overlapping detections. RT-SAM is developed with a modular design that supports the use of 
any object detection solution. In the context of T3.6 a state-of-the-art object detection algorithm 
is selected and customized to deal with the specific needs and challenges that will be faced in 
the project. The modules developed for tasks 3.3 and 3.6 are extensively described in the 
following sections. It is worth noting that the object detection solution will be used for both the 
RT-SAM module and as a standalone module for the needs of the project. At the time that this 
deliverable is written, the development of all modules is still in process. This means that some 
of the features of the final versions have not been developed yet and some of the 
implementation details are not included in this version of the deliverable. The final version of 
the modules, along with all the details for the integration with the rest of the project are 
expected to be included in the second version of the deliverable (D3.6 – Dynamic and Adaptive 
Swarm Optimization V2). 
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2 Resource Controller  

2.1 Introduction 
The Resource Controller (RC) module is developed in the context of T3.3 - Collective 

intelligence for swarming robots and optimised human-robot collaboration. The objective of 
this module is to provide a tool that will create and manage missions with multiple, 
heterogeneous assets, demanding minimum cognitive load from the operator and providing 
autonomy, safety and increased operational efficiency. RC module receives the high-level 
operator defined objectives and translates them to low-level commands and actions for all the 
involved assets and modules, participating in a mission. After the definition of a new mission 
through the ARESIBO Mission Editor tool, the RC receives and handles the defined, high-level 
information, in order to coordinate all the participating assets and manage the execution of the 
mission. RC module’s fundamental functionality is to provide the UxVs with a plan to follow for 
every mission. Moreover, it is likely that it will act as a coordinator for the tasks that will be 
performed from other modules. 

Regarding the path planning functionality, RC is going to support the following modes: 

• Follow paths 

• Coverage Path Planning 

• Persistent coverage 

The aforementioned modes will be explained in the following sub-sections. 

2.2 Communication and message exchange 
Since the integration of the project has not started at the time that this deliverable is 

written, the exact pipeline of data and exchange of messages for the initiation and the 
management of a mission has not been finalized yet. However, below follows a list of the 
expected inputs/outputs of the module: 

Input: 

• A mission description from “Task 4.2 DSL-based specification of autonomous 

robotic missions” 

Output: 

• A message containing information to visualize missions 

• A mission plan for the UxVs and participating assets in a mission to follow 

• Messages for the activation/triggering of different modules participating in a 

mission 

2.3 Follow paths mode 
This is the simplest of the modes that RC supports for path-planning. In this mode the 

operator of the platform defines a set of waypoints (strictly defined path) for one or more 
vehicles to follow. RC in this case does not need to calculate any paths, but has to just forward 
the user-defined ones, for visualization and execution. A defined mission is likely to contain 
paths for multiple vehicles or groups of vehicles simultaneously. Since RC in the follow paths 
mode does not need to compute any paths for the mission, its role is restricted to the 
management and coordination of them.  
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2.4 Coverage Path Planning 
When the description of a mission contains as objective the coverage of a Region of 

Interest (ROI), RC is responsible to calculate paths for one or more vehicles, inside a polygon 
ROI, in order to cooperatively, completely cover this ROI. 

RC expects to receive the following information: 

• WGS84 coordinates of the polygon ROI, 

• number and names of the vehicles participating 

• scanning density in meters (will be explained later) 

• initial positions of the involved assets 

• percentages of the complete ROI that should be assigned to each of the 
vehicles 

The Coverage Path Planning (CPP) problem deals with the generation of paths inside 
a given ROI, for one, or more vehicles, having in mind specific coverage capabilities of the 
sensors used, with the objective to completely cover the ROI, taking into account constraints 
that may exist for the vehicles, or the ROI itself. Most of CPP methods, try to be optimal for 
specific kind of missions, by trying to minimize turns, operational time, etc. 

There are many research works available in the field of CPP. The state of the art on 
CPP methods is summarized in [1] and [2]. CPP methods can be divided in categories, based 
on different aspects that are taken into account when trying to solve the problem. Some of 
these categories are presented below: 

• cellular decomposition/grid-based methods (discretization method for the ROI) 

• single/multi-robot 

• on-line/off-line (depending on the capability to alter missions in real-time) 

• energy-aware or not (depending on the energy-efficiency of the generated paths) 

• categories regarding the patterns of (lawnmower patterns, spiral patterns, 

Spanning Tree Coverage patterns (STC) [3]). 

Having extensively studied the most important works in CPP so far, for the project was 
developed a novel one, integrating all these features that would make it appropriate for this 
specific use. In the following subsections, the CPP method developed to calculate the paths 
will be extensively described. This method is based on a previous work from ConvCAO – 
CERTH’s lab, the DARP algorithm [4] that was developed to divide areas for multi-robot CPP, 
however, a set of optimizations and innovative ideas were used in order to be optimal for real-
world use. The provided solution incorporates energy and resource efficient features, supports 
the definition of obstacles inside the ROI and unlike other methods is able to support both 
convex and concave polygons, making it ideal for the scenarios that will be faced in the 
ARESIBO project. 

2.4.1 ROI Representation on Grid & Path Planning 

The data needed as input for the CPP method to work are: 
 

• The defined ROI, along with potential obstacles, formatted in the WGS84 coordinate 
system, 

• A scanning density in meters, representing the distance between two sequential 
designed trajectories, 

• the number of UxVs for themission, 

• the initial positions of the UxVs. 
 

The output produced of the CPP method is a set of paths, one for each UxV, so as to 
completely cover the ROI. 
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1) Field Representation on Grid 
The CPP method developed for the project is a grid-based method. This means that a 

physical ROI, selected on a map, has to be represented with the use of a grid, in order to be 
used as input for the CPP method. 

i) Transformation of Coordinates 
As a first step, all of the coordinates that will be used in the method (ROI, obstacles, 

initial positions) have to be transformed from the WGS84 system1, to a local NED system2, 
with a common reference point. NED coordinates are used, because of their convenience they 
offer in the node placement and optimization procedures that take place. The paths are also 
calculated in NED coordinates and are transformed later, back to the WGS84 coordinate 
system. 

ii) Nodes Placement 
The next step is to represent the polygon ROI with the use of a grid. The grid size 

should be analogous to the scanning density that user has selected. The centres of the grid's 
cells are used as nodes for the construction of MSTs, a step that is critical for the generation 
of the paths. 

iii) Grid Representation 
 Once the grid is initiated, each node obtains a state to describe it. The possible states 
are: 

• Obstacle, used to represent areas that are outside of polygon, or inside obstacles. 

• Free Space, for nodes that will be available for the path generation. 

• UxV, used to represent the initial UxVs' position. 
 

2) Node Placement Optimization 
 One of the very significant limitations that grid-based methods face when they are 
applied in complex-shaped ROIs, is that the representation of the ROI ends up being a lot 
different from the actual region, resulting in incomplete coverage. 
 In this work, this issue is faced by the implementation of an optimization intending to 
provide optimal node placement for complete coverage. The key idea is that by transforming 
the polygon ROI over a grid that respects the selected mission constants, there are states that 
provide better coverage than others. The optimization procedure implemented has a significant 
effect on both the provided coverage and the qualitative features of the generated paths. 
 

3) Task Allocation & Path Calculation 
Having an optimal representation of the ROI on grid, DARP algorithm takes over to 

divide the complete region to sub-regions, exclusive for each UxV, and provides independent 
paths for all of them utilizing STC. The generated paths have energy efficient characteristics, 
as they respect UxVs' initial positions, avoiding redundant movements that do not contribute 
to the coverage process and reduce the number of unnecessary turns. 

i) DARP - Area Division 
 DARP algorithm [4] deals with the path planning problem of a team of mobile robots, in 
order to cover an area of interest, with prior-defined obstacles. This technique transforms the 
original integer programming problem into several single-robot problems, the solutions of 
which constitute the optimal mCPP solution, alleviating the original mCPP explosive 
combinatorial complexity. n the heart of the proposed approach lies the DARP algorithm, which 
divides the terrain into a number of unique areas, each corresponding to a specific robot, so 
as to guarantee complete coverage, non-backtracking solution, minimum coverage path, while 
at the same time does not need any preparatory stage. 

DARP’s initial implementation provides a fair area division of the region, meaning that 
all vehicles are assigned with the exact same percentage of the complete ROI. In the context 

 
1 https://en.wikipedia.org/wiki/World_Geodetic_System 
2 https://en.wikipedia.org/wiki/Local_tangent_plane_coordinates 
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of this work, an extension of the algorithm is implemented, in order to also allow a proportional 
area division, based on the different energy and operational capabilities of the vehicles. 

The following figures show the allocation of an area to five robots over the execution 
time of DARP, from the beginning, till the point that the algorithm has converged to a solution. 
The black dots in these figures represent the robots’ initial positions. Different colours are used 
to visualize all the exclusive sub-regions, that will be assigned to different robots. The colour 
for every sub-region remains the same at all time-steps of the execution of DARP. It should be 
noted that the timesteps cannot be directly matched with the execution time of the algorithm, 
which depends on the hardware used. In any case, area allocation must be performed in a 
way that every exclusive sub-region includes the initial position of the robot that will be 
responsible for it, so as to avoid redundant movements of the robot that do not contribute to 
the coverage procedure. More details about the implementation of DARP algorithm, along with 
a complexity analysis, can be found in [4]. 
 

 
Figure 1: DARP – Progress 0% 

 
 

 
Figure 2: DARP – Progress 20% 
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Figure 3: DARP – Progress 40% 

 
 

 
Figure 4: DARP – Progress 60% 
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Figure 5: DARP – Progress 80% 

 
 

 
Figure 6: DARP – Progress 100% 

 
ii) Reduced Turns MSTs & Path Generation 

As mentioned above, from the time that each robot gets assigned with an exclusive 
part of the overall ROI, a single-robot STC problem is solved for all of them. For the path 
generation procedure, a MST is constructed in each sub-region and a circumnavigating path 
is generated around it afterwards. As mentioned above, the spanning-tree nature of the 
algorithm is likely to create complex shaped paths with a lot of unnecessary turns. In order to 
alleviate this issue in this work, during the MSTs generation are taken actions in order to 
significantly reduce the number of turns for each vehicle. In the following figure is presented 
an example for turn-reduced and non-turn-reduced path in the same polygon ROI. 
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Figure 7: Without turn reduction: 94 turns 

 
 

 
Figure 8: With turn reduction: 30 turns 

 

2.4.2 Simulated Evaluation 

The evaluation of the CPP method will be performed through a series of 
examples. It should be noted that the efficiency of the generated paths regarding the 
coverage capability, is independent of the number of UxVs participating. So, a multi-
robot coverage example is included just to demonstrate the capability. For all the 
examples is included an image of the generated paths, a heatmap of coverage showing 
the percentage of the area that was covered and how many times and a histogram of 
overlapping coverage. The last figure is helpful to understand if operational resources 
were wasted in order to provide complete coverage of the region. For all the 
experiments was selected an overlap percentage of 30-50% for the coverage between 
two sequential scans, which is usually required in order to have effective operation of 
the modules utilizing computer vision. Moreover, for all the presented examples is 
included the number of waypoints, the value of the optimization index J, the actual 
percentage of coverage and the actual percentage of overlapped coverage. The ROIs 
presented were selected randomly and were designed for execution with small, 
coptered, aerial vehicles. However, the mCPP algorithm can provide paths for any type 
of unmanned vehicles, taking into account the motional constraints and coverage 
capabilities of them. 
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1. Rectangle ROI 
 

# Waypoints Optimization Index 
Percentage of 

Coverage 
Percentage of 

Overlap 

30 0.8982 99.998976 % 34.859423 % 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 9: Rectangle ROI 
Paths & evaluation 
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2. Rectangle ROI with Obstacle 

 

# Waypoints Optimization Index 
Percentage of 

Coverage 
Percentage of 

Overlap 

45 0.810835 99.980993 % 84.838557 % 

 
 
 

 
Figure 10: Rectangle ROI with Obstacle 
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Figure 11: Evaluation of Rectangle ROI with Obstacle 
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3. Convex Polygon ROI 
 

# Waypoints Optimization Index 
Percentage of 

Coverage 
Percentage of 

Overlap 

59 0.770574 93.676319 % 51.022816 % 

 

 
  

Figure 12: Convex Polygon ROI Paths & Evaluation 



 

D3.5 Dynamic and Adaptive 
Swarm Optimization V1 

 
 

ARESIBO - GA 833805  Page 17 of 38 

4. Convex Polygon ROI with Obstacle 
 

# Waypoints Optimization Index 
Percentage of 

Coverage 
Percentage of 

Overlap 

70 0.775232 95.174975 52.911855 % 

 
 

 
 
  

Figure 13: Convex Polygon ROI with obstacle - Path & Evaluation 
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5. Concave Polygon ROI 
 

# Waypoints Optimization Index 
Percentage of 

Coverage 
Percentage of 

Overlap 

59 0.770574 93.676319 % 51.022816 % 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14: Path in concave polygon ROI 
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Figure 15: Evaluation of path in concave polygon ROI 
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6. Concave Polygon ROI with obstacles 
 

# Waypoints Optimization Index 
Percentage of 

Coverage 
Percentage of 

Overlap 

78 0.756781 91.302181 % 52.928507 % 

 
  

Figure 16: Path in concave polygon ROI with obstacles 
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Figure 17: Evaluation of path in concave polygon ROI with obstacles 
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Figure 18: Multi-robot coverage paths in the same concave polygon ROI with obstacles 

 

7. Summary of the mCPP method 
 As shown in the previous examples, the CPP method developed for the RC module of 
the ARESIBO platform offers a really high percentage of coverage in the defined ROI, 
manages wisely the operational resources offering energy and time efficiency and is capable 
of handling complex concave polygon ROI’s with obstacles without any problem. In simple 
rectangle ROI’s the method provides paths that completely cover the ROI, while even in the 
most unfavourable concave polygons with obstacles, that most of existing CPP methods 
cannot face at all, this method manages to provide paths with a percentage of coverage larger 
than 90%. It should be noted that in cases where the complete coverage of the ROI is critical, 
the method also provides the mode for better coverage that allows the paths to get outside of 
the polygon. Moreover, smaller scanning density or larger percentage of overlap may be used 
as well. The features provided by this CPP method makes it ideal for the need of the ARESIBO 
project. 
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2.5 Persistent coverage 
In this path planning mode RC will provide paths for one or more vehicles inside a 

polygon ROI, in order to continuously patrol this ROI. For this path planning mode, the CPP 
method described above will be used as a base and a set of optimizations to minimize the time 
demanded to visit all of region’s points again will be used. At the time that this deliverable is 
writer, the persistent coverage mode of the RC module is at the starting point of development. 
A detailed description of persistent coverage mode will be provided in the second version of 
the deliverable. 
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3 RT-SAM: Real-Time Situational Awareness Maximization 

3.1 Introduction 
 

The RT-SAM module is developed in the context of T3.6 - Sensing optimization that 
deals with the Dynamic Data Driven Assimilation (DDDAs) and the active sensing. The main 
focus of this module is the development of a self-learning cognitive tool, which will be able to 
autonomously guide all of the surveying assets, so as to increase the situational awareness 
on the field in real-time. In order to achieve the aforementioned goal two tasks are of a 
paramount importance: a) a state-of-the-art object detector and b) real-time adaptive path 
planning for the UxVs. 
 

3.1.1  State-of-art object detector 

Recent technological advancements in terms of hardware [5] have enabled the 
development of deep learning architectures [6] capable of dealing with extremely difficult [7] 
and abstract problems [8]. While deep learning techniques have been applied to a variety of 
task, the tasks at which the more impressive impact has been observed are the ones involving 
image processing. The key innovation which allowed this breakthrough is the Convolutional 
Neural Network (CNN) concept. The fundamental task in this field is image recognition or 
classification, where the goal is to classify a set of images into separate categories using the 
optical characteristics of each input image. They have successfully been used in simple 
consecutive mode as in VGG [9] or more elaborated implementations as in [10] where residual 
neural networks where introduced.  

A closely connected task to image recognition is object detection. The latter task 
involves two interconnected layers: image classification and a bounding box (bbox) regression 
part. The purpose of object detection is to identify and localize object of interest inside an input 
image. Thus, an additional step (regression phase) is inserted in the process of image 
classification in order to achieve the overall objective.  
 

  
(a) Horizontal bounding box (b) Oriented bounding box 

Figure 19: Object detection and localization 
 

The most common approach involves a tight bounding box but other options also exist. 
In Figure 19 (a), an example of horizontal bounding box is presented around two objects, a 
dog and a person. It can be observed that although the bounding box strictly surrounds the 
required object, there is a lot of background information also included within the box area. This 
effect is more intense in the case of the dog in comparison to the person box. An oriented 
bounding box, i.e. a bounding box which can be rotated also besides being stretched to 
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encompass the object, around the dog seems to better encapsulate the actual object and 
contain less background information as can be seen in Figure 19 (b). Although, there are works 
that utilizes the notion of oriented bounding boxes, as in [11], the typical approach is to use 
horizontal bounding boxes. One of the main reasons for this selection is the additional 
parameters which should be learned for the oriented bounding boxes, apart from the 4 
variables representing a horizontal box, which eventually increase the overall complexity.   

An object detector will produce numerous bounding box candidates, with this number 
being at size class of 200-300 per image. The majority of the estimated areas are not useful 
candidates. Thus, it is necessary to filter the results and only retain what is considered as a 
good candidate. As the model performs an image classification for every bounding box, a 
corresponding confidence score can be assigned to each candidate area. Therefore, all 
rectangles can be ranked and treated separately considering this score. It is expected that a 
well depicted object will acquire a higher score than a blurred, occluded or generally not clearly 
presented instance. Some examples are present in Figure 20 where the occluded cars are 
denoted with lower scores than the fully represented and even a misclassified bounding box is 
displayed, which in fact contains a fraction of a truck. Producing a lower score can be efficiently 
filtered without resulting any false positive detection. The image was acquired from VisDrone 
dataset [12] which contains various small objects and is entirely recorded using Unmanned 
Aerial Vehicles. A typical value to distinct the useful from the noisy candidates is 0.5 although 
this can be adapted depending on the problem or the model. Applying this threshold to Figure 
20 would lead to elimination of all bounding boxes without a full visible car inside. 
 

 
Figure 20: An example containing multiple instances of car objects from VisDrone. 

 
UAV object detection 

A general-purpose object detector initially focused on objects being captured on a first-
person perspective. Nonetheless, current interest has been shifted to more sophisticated 
perspectives and acquisition angles such as from a UAV which captures objects from above, 
with or without an angle and typically from a distance. The following figures depict car instances 
along with their corresponding bounding boxes. In addition, all other objects of interest are 
discarded as it is applied in Figure 23 where the spatially dominant bus is excluded. It is 
obvious that the visual characteristics of the object change according to the perception. The 
first image has been retrieved from Pascal Voc [13], a general-purpose dataset that also 
includes aerial imagery, while the second has been extracted from UAV123 [14] which is a 
dataset for object tracking evaluation. Nonetheless, the latter database can also be utilized for 
object detection objective as both models are relevant to the final task. In addition, Figure 23 
presents an another example where car instances are depicted and were taken from database 
COCO [15] which comprises an another general-purpose dataset. In all cases, the main object 
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of interest involves cars but it is clear that different views of this object are depicted in every 
case. As it is obvious, the acquisition perception changes significantly between the three 
images, but also other quality differences can be spotted: the typical size of objects depicted 
in UAV imagery is smaller than that of a general-purpose dataset. The example selected for 
the UAV perspective can be considered similar. In ARESIBO, the perspective is expected to 
resemble the second example both in aspect of point of view as well as the object size, and 
even smaller object can be expected to appear, and thus, special care should be taken for the 
appearance and recognition of small objects. Regarding the orientation of the bounding boxes 
in this case, another factor that horizontal boxes are more suitable is that since the objects are 
usually small and the most important issue is the actual localization and recognition of the 
objects, in other words the correctly identification of an object and derivation of its position, the 
amount of included background information inside the bounding box seems a secondary 
oversight.  

 

 
Figure 21: Typical example of an image containing car from Pascal Voc 2007 

 

 
Figure 22: Typical example of an image containing cars from UAV123 

 

 
Figure 23: Typical example of an image containing cars from COCO 

 
As it has been stated the perspective from which an image is captured is of high 

importance for the achievement of effective detection results. Though, the ideal case would be 
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to exclusively use datasets with UAV point of view, this is not always easy to be fulfilled. 
Although, nowadays there are UAV perspective specific datasets which could be utilized for 
the purposes of the project, there is no guarantee that every object of interest will be covered 
by the available ones. Usually, the available datasets cover the most typical classes quite 
satisfactory, with many images and perspectives, but provide less, limited or even minimal 
images for cases of more specialized objects. The latter cases are a large issue when the 
coverage of these classes is also a requirement. The unbalance of objects of interest 
occasionally causes problem with the proper detection of misrepresented classes. This is 
further enhanced when the provided samples do not cover all required perspectives.  

 
Related work & selected object detector 

First approaches of Object detection with deep learning was a direct extension of region 
proposal network working along with convolutional neural networks (CNNs) as in Fast RCNN 
[16]. This approach had some efficiency issues and an end-to-end approach using CNNs was 
introduced: Faster RCNN [17] which proven to be quite more efficient while being effective 
also. In general, object detector can be roughly separated into two categories regarding the 
use of a Region Proposal Network (RPN): two phase detectors which make use of RPN and 
single-phase ones which attempt to simultaneously apply classification and regression. 
Monumental works of the first category is the aforementioned Faster RCNN along with R-FCN 
[18] while for the second category (single phase detectors) are Single Shot Detector (SSD) 
[19] and Yolo [20]. From these works Faster RCNN focuses more on improving the detection 
performance, Yolo primarily on creating an efficient model and SSD on making a compromise 
between the two latter cases. Many modifications have been proposed of the previous models 
and some of them have provided improved version(s) of the initial model also, as in the case 
of Yolo which now has 5 distinct versions so far. Besides these models, various architectures 
have been also proposed which either attempt to further improve the effectiveness or the 
efficiency. For example, in [21] multiple feature maps are being used with Faster RCNN to 
improve the model. 

If a comparison is to be made between the two categories, the two phase detectors 
exhibit a robustness and higher performance because the RPN is usually quite effective at 
filtering the non-relevant bounding boxes and, thus, provide the model with good box 
candidates. Single phase detectors on the other hand, mainly focus on efficiency, since they 
lack the additional step of RPN, while trying to achieve good performance. It must be 
highlighted that the former category typically requires less extensive augmentation to achieve 
decent results. In the case of ARESIBO, the typical object size is expected to be small 
compared to the whole image as the footage will be captured by UAVs hovering on a distance. 
Thus, a robust object detection system is considered to be an efficient selection in order to be 
able to deal with small objects.  

The concurrent developments in the field of robotics have allowed the introduction of 
such methodologies to ground and aerial and also the development of special-purpose 
algorithms to detect and/or track objects of interest with one [22] or more UxVs [23]. For the 
needs of the project, a state-of-the-art detection algorithm will be used, leveraging all of the 
aforementioned advancements in the relative field, that will be tailored to the needs of 
ARESIBO platform, trained on public  (and if necessary private) datasets and will be developed 
in the context of the same task (T3.6).  

The dataset through which a model is trained constitutes a key role in the effectiveness 
of the model. A general rule is for a model to successfully cover the usually unforeseen 
inference images, to use a quite large dataset. Nevertheless, in many cases, the collection of 
a large training set is not easily accomplished. Thus, in those cases, and in order to fulfill the 
requirements posed in the larger degree we opt for a model which can adopt and generalize 
easier. This is interpreted as the ability of the model to recognize misrepresented classes or 
even unforeseen perspectives of objects of interest. Faster RCNN has proven to be highly 
robust and, thus, to produce a well generalized effective model. Thus, in this context, a 
specially trained Faster RCNN implementation has been selected to meet the project 



 

D3.5 Dynamic and Adaptive 
Swarm Optimization V1 

 
 

ARESIBO - GA 833805  Page 28 of 38 

requirements and to accurately detect objects of interest. The actual model that was used is 
Faster RCNN with a Resnet101 [10] backbone which has a reported inference time of 106ms 
per image on COCO dataset. In the following figures, some examples of this specially trained 
Faster RCNN model are presented where the under-consideration classes were identified 
based on an initial assessment of the first version of the end-user requirements. 
 

 
Figure 24: Inference example of Faster RCNN 

 

 
Figure 25:  Inference example of Faster RCNN (UAV perspective) 

 

 
Figure 26: Inference example of Faster RCNN (UAV perspective) 
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As mentioned before, a Faster RCNN model was trained taking into consideration the 
initial end-user requirements available at the time. As a first choice publicly available datasets 
were chosen to provide training samples for the model. In this aspect, a number of dataset 
provided for object detection or similar tasks was used which includes UAV123, VisDrone and 

UCF aerial action dataset [24]. However, in order to include samples for all object of interest, 

defined in the end-user requirement, private datasets were also used along with the 
aforementioned datasets. The overall training set included more than 20k images. Additionally, 
an evaluation dataset was created to examine the performance of the model and its ability to 
learn the provided training set. This later dataset, as expected did not include any training 
image and it was specially chosen so as the different classes have a balanced representation 
in it. Table 1 contains the evaluation results of the model on this evaluation set. The model was 
tested on a system equipped with a GTX-1070TI-A8G GPU card which achieved a processing 
time of 5 fps for a typical image size of 720p. The classes that were used include most typical 
land and maritime vehicles along with a human (person) class. It worth mentioning that the 
final class list is expected to be further modified according to the final end-user requirements. 

 
Table 1. Detection results of Faster R-CNN 

Object category Average Precision (AP) mAP (mean 
AP) 

Boat 0.56543 

0.66271 

Bus 0.70576 

Car 0.75568 

Inflated boat 0.41560 

Motorcycle/Bicycle 0.76698 

Person 0.84015 

Ship 0.73174 

Speedboat 0.53311 

Truck 0.64993 

 
Real-time adaptive path planning for the UxVs: refers to the on-line trajectory 

generation for each robot of the swarm, based on the feedback provided for the relevant task. 
Despite many methodologies are capable of detecting objects of interest in real-time, most of 
them rely on either predefined or human-controlled paths for the UxVs. Moreover, such 
approaches lack the active feedback required for a real-time adaptive path planing and the 
coordination among different UxVs is usually achieved by assigning spatially exclusive areas 
to each member of the swarm, significantly restricting the UxVs cooperation. The novel module 
we developed tackles all of the above issues and it is capable of optimizing in real-time the 
monitor positions of the UxVs to increase the overall situational awareness by allowing each 
member of the swarm to move freely inside the operational area. In addition, no prior 
knowledge about the “geolocation” of information-rich areas is needed, thereby no human-
controlled predefined path is required. 

Figure 27 portraits an indicative example of such a setup, in which a swarm of 4 UAVs 
has as an objective to increase the accuracy and number of detected pedestrians and vehicles. 
The left-hand side of Figure 27 illustrates the initial monitoring positions for the swam of 4 
UAVs and their corresponding fields of view (transparent polygons) of the all the UAVs, 
moments after their take-offs. The right-hand side of this figure illustrates the converged 
configuration for the swarm of UAVs. A direct outcome, that can be derived sorely from the 
bird’s-eye view of the operational area, is that the proposed algorithm spread the UAVs taking 
into consideration the combined field of view. UAVs have been placed either  in close vicinity 
of a crossroad (UAV 2 & 4), to exploit the fact that these spots usually have the biggest flow of 
cars/people or in positions that allows them to monitor the whole length of a road segment 
(UAV 1 & 3). With the converged positions, the UAVs can monitor multiple road-parts from a 
single monitoring spot. 
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(a) Initial configuration  

 
(b) Final configuration 

s  

3.2 Technical Elaboration 

3.2.1 UxV control 

Consider a team of UxVs which work cooperatively to increase the situational 
awareness over an unknown, dynamic environment. At each moment, each UxV is allowed to 
configure its own DoF (e.g pose by changing its own position and orientation). Moreover, a 
number of constraints is applied to the UxV controllable variables for a number of reasons. 
These are: 

 
i. The rate of change of every controllable variable is restricted to a maximum value, so 

as to ensure that the HITL (human in-the-loop) will be able to monitor all of the UxVs 
and any cancel in time any abnormal behavior. 

ii. The UxVs should always remain inside the operational area. 
iii. The UxVs should avoid any collisions with all the obstacles (stationary or moving). 

 
Constrain (i) is met by the setting *.json file provided by Mission Planner, (ii) via telemetry 
measurements provided by each UxV individually and (iii) by leveraging the on board mounted 
sensors on each UxV. 

3.2.2 Measurements 

After moving towards a new position, each UxV will be able to enable its sensors and 
thereby perceive a part of the operational area. This perception includes RGB and Depth 
image. The RGB image is processed by the corresponding module, which will provide a list 
with all the detected objects, their confidence interval and the relative location of the 
corresponding bounded box. The center of mass, in each one of the detected objects, is 
extracted by utilizing the formation of the pixels that lie inside the bounding box of that object. 
Combining also the information from the depth image, the dimension of center of mass is 
expanded to 3D space. 

 

Figure 27: Illustrative example: A swarm of 4 UAVs is deployed having as objective to find the 
monitoring poses (position & orientation) inside the operational area (red, dashed polygon), that 
maximize the overall situational awareness. In both instances [sub-figures (a) & (b)], the fields of 

view (transparent polygons with the corresponding colour) of all the UAVs (top bird’s-eye view) are 
depicted. 
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(a) RGB Image (b) Depth Image (c) 3D Representation 

 

3.2.3 Objective function 

Having projected all these objects in a global 3D frame, we can now retain only the 
unique objects, by checking the distance between the detected objects of each UxV, in this 
common 3D frame. In the case where an object is identified by more than one UAV, the object 
with less confidence in its detection is discarded. By doing so, we want, on one hand, to “force” 
UxVs to detect unique objects, and, on the other hand, to reward UxVs that have achieved to 
detect objects with a high level of certainty. Thereby, the objective function of the swarm is 
defined as the summation of the confidence interval for every uniquely detected object of 
interest. 
 

   

(a) UAV 1 perception (b) UAV 2 perception (c) Combined perception 

 

3.2.4 Navigation 

Initially the Centralized System will calculate the contribution of the last action each 
UxV performed. Then, it will forward these contributions to the corresponding UxVs. Each UxV 
will keep track of these contributions and it will use them to update its estimator. It will then 
create a number of perturbations around its current position and it will evaluate each one of 
them utilizing the aforementioned estimator. Finally, each UxV will move towards the candidate 
position that maximizes its contribution and thereby the maximization of the objective function 
will be achieved. 

3.3 Algorithm Evaluation 

3.3.1 Implementation details 

In order to evaluate the the developed algorithm, we run a number of experiments using 
the AirSim simulator [25]. AirSim is an open-source, cross-platform, simulator for drones, cars 
and more that supports hardware-in-loop with popular flight controllers for physically and 
visually realistic simulations. All the experiments were carried out in the CityEnv of the 
aforementioned simulator, which is a vast, realistic environment that simulates both the static 
structures and the highly non-linear and dynamic behavior of the moving assets (e.g. cars, 

trucks, pedestrians, etc.). The operational area (Figure 30Figure 27) is defined on top of the 

“central” roundabout of the environment. Robots were allowed to move inside a circle centered 
at the center of the roundabout and with a radius of 70 m, covering an area of 15393.8 m2. 

Figure 28: Sensor information received and 3D representation 

Figure 29: Illustrative example of the objective function. Images taken from each UAV with the 
corresponding bounded boxes (a) & (b). Their combined perception (c) 
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The swarm consists of simulated multirotor UAVs instantiated with the AirSim built-in 
flight controller (called simple flight) and equipped with stationary cameras. Each stationary 
camera is located at the front and rotated downwards 45 degrees on the pitch axis. Each UAV 
can move inside the xy plane of the previously defined operational area and also has a 360 
degrees yaw movement. The operational height of the first UAV is at 14m from the ground, 
while each additional UAV is deployed at a height 0.5m higher than the previous one. Our 
algorithm can also facilitate different types of UxV and each UxV may have more DoF, but as 
a proof of concept the aforementioned UAVs are sufficient. 

The calculation of detected objects, in each one of the received RGB images of the 
UAVs, was achieved by employing YOLOv3 [26] detector pretrained on COCO dataset [27]. 
YOLOv3 is indeed a state-of-the-art object detector capable of producing reliable predictions 
in real-time, however, it has not been trained for data coming from a simulator, nor for top-view 
images (typical UAV’s images.). Moreover, COCO dataset is a general-purpose large-scale 
object detection. Although this unsuitability of the object detector caused several problems 
(e.g. objects completely missed if they were observed from different angles, radical changes 
in the confidence levels of detected objects caused by slight changes in the pose of the UAV, 
etc.) in the evaluation of the UAVs’ configuration, we chose to apply the object detector “as is”, 
to highlight that the proposed navigation algorithm does not utilize any information related to 
these choices, therefore it is modular with respect to alternative systems. 
 

 

  

3.3.2 Performance Comparison with Centralized Semi-Exhaustive Search 

Before continuing with the analysis of the evaluation results, let us define an algorithm 
that has little practical value, however, its achieved performance can provide us with valuable 
insights, when compared with the developed navigational algorithm. This algorithm is a 
centralized, semi-exhaustive methodology that works as follows: At each time-step, first, it 
generates a subset (semi-exhaustive) of candidate UAVs’ configurations (centralized) out of 
all possible ones. Then, all these candidates are evaluated on the AirSim platform, i.e. the 
UAVs have to actually reach that candidate monitoring positions, and, for each one of them, is 
calculated also the objective function. Finally, the next configuration for the swarm is the 
candidate maximizes the objective function value. This procedure is repeated for every time-
step of the experiment. 

As the number of candidate UAVs’ configurations (that are evaluated) increases, the 
performance of this algorithm will approximate the best possible one. The biggest asset of this 
approach, to be able to evaluate configurations of UAVs before deciding about their next 
movement, is also its major disadvantage, as it renders this decision-making scheme 
unfeasible and unsuitable for any kind of real-life applications. 

 Figure 30: The operational area in which the developed algorithm was evaluated 
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Figure 31 presents a comparison study between the semi-exhaustive search and the 
proposed algorithm. 4 UAVs were deployed in the same operational area as defined in Figure 
30. For both algorithms, the experiment lasted 300 time-steps. The semi-exhaustive algorithm 
evaluated 60 different UAVs’ configurations before deciding about the next monitoring position. 
The proposed algorithm was capable of producing a similar behavior with the semi-exhaustive 
algorithm, having almost the same convergence rate. The final converged value (average 
value after 150 time-steps) was 47.64 for the proposed algorithm and 50.97 for the semi-
exhaustive algorithm. All in all, this analysis highlights that the proposed algorithm is capable 
of achieving a performance that is equivalent to having the “luxury” to spare 60 different 
combinations of UAVs, before deciding about the next configuration of the swarm. 

 

  

3.3.3 Trajectory – Areas of Convergence 

In this subsection, we look deeper into the results of Figure 31 for the evaluation of the 
developed module and provide with extra insights and visual results about its operation and 
robustness. Figure 32 graphically illustrates the trajectories of all the UAVs from their taking-
off positions to their converged ones, for a single instance, as calculated by the module. This 
visual representation of the resulting trajectories validates the fast convergence of the 
proposed navigation algorithm, as it was initially derived from Figure 32. The fluctuations of 
the UAVs around the converged positions is an essential ingredient of module, that allows 
rapid adaptation of the swarm to cope with changes in the environment (e.g. sudden changes 
of the traffic-flow, congestion, etc.). We can see that the final positions of the UAVs are close 
to a crossroad, where the traffic is usually higher. Moreover, in the final configuration of the 
swarm, robots are placed in such a manner (fixed positioning and orientation) so as to be able 
to detect object from multiple road-parts. 

Figure 31: Performance comparison between the developed algorithm and the centralized, semi-
exhaustive search 
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Figure 32: Evolution of the trajectories as calculated in real-time by the proposed algorithm 
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4 Conclusions 

The modules described in the previous sections provide the operator of the ARESIBO 
platform with some powerful tools for the planning, management and execution of missions, in 
order to acquire and process data, to obtain complete operational. Thanks to them, the 
operator of the platform is able to create and execute missions involving multiple vehicles, with 
the minimum demanded cognitive load possible, without the need of knowing specific technical 
details, or having specialized training courses. The state-of-the-art algorithms developed for 
this purpose, ensure increased operational efficiency, high accuracy in the collected 
information and most importantly safe multi-robot autonomous operations. The state-of-the-art 
object detection solution provided, facilitates in the overall situational awareness, the 
assessment of threats and the high-level guidance of vehicles in order to fulfil the missions’ 
objectives. It is expected that in the second version of this deliverable (D3.6 - Dynamic and 
Adaptive Swarm Optimization V2) will be presented further results for the evaluation of both 
modules described above, and will be resolved the possible issues that will come up during 
the integration and testing with the rest modules of the project. 
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